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INTRODUCTION 
 
In 1963 P. Cohen established various fundamental independence results in set theory 

using a new technique which he called forcing. Since then there has been a deluge of 
new results of various kinds in set theory, proved using forcing techniques. It is a 
powerful method. It is, however, a method which is not as easy to interpret intuitively as 
the corresponding method of Gödel which establishes consistency results. Gödel defines 
an intuitively meaningful transfinite sequence of (domains of) classical models Mα, 
defines the class L to be the union of the Mα over all ordinals α, and shows L is a 
classical model for set theory [4; see also 3]. He then shows the axiom of 
constructability, the generalized continuum hypothesis, and the axiom of choice are true 
over L, establishing consistency. 

In this book we define transfinite sequences of S. Kripke’s intuitionistic models [13] 
in a manner exactly analogous to that of Gödel in the classical case (in fact, the Mα 
sequence is a particular example). In a reasonable way we define a “class” model for 
each sequence, which is to be a limit model over all ordinals. We show all the axioms of 
set theory are intuitionistically valid in the class models. Finally we show there are 
particular such sequences which provide: a class model in which the negation of the 
axiom of choice is intuitionistically valid; a class model in which the axiom of choice 
and the negation of the continuum hypothesis are intuitionistically valid; a class model 
in which the axiom of choice, the generalized continuum hypothesis, and the negation 
of the axiom of 14 constructability are intuitionistically valid. From this the classical 
independence results are shown to follow. 

The definition of the sequences of intuitionistic models will be seen to be essentially 
the same as the definition of forcing in [3]. The difference is in the point of view. In 
Cohen’s book one begins with a set M which is a countable model for set theory and, 
using forcing, one constructs a second countable model N “on top of” M. Forcing 
enables one to “discuss” N in M even though N is not a sub-model of M. Various such N 
are constructed for the different independence results. Cohen points out [3, pp. 147, 
148] that actually the proofs can be carried out without the need for a countable model, 
and without constructing any classical models; this is the point of view we take. It is the 
forcing relation itself that the center of attention [see 3, page 147], though now it has an 
intuitive interpretation. 

A similar program has been carried out by Vopênka and others. [See the series of 
papers 22, 23, 24, 27, 6, 25, 7, 8, 26, 28]. The primary difference is that these use 
topological intuitionistic model theory while we use Kripke’s, which is much closer in 
form to forcing. Also the Vopênka series uses Gödel-Bernays set theory and generalizes 
the Fα sequence, while we use Zermelo-Fraenkel set theory and generalize the Mα 
sequence. The Vopênka treatment involves substantial topological considerations which 
we replace by more “logical” ones. 

This book is divided into two parts. In part I we present a thorough treatment of the 
Kripke intuitionistic model theory. Part II consists of the set theory work discussed 
above. 

Most of the material in Part I is not original but it is collected together and unified for 
the first time. The treatment is self-contained. Kripke models are defined (in notation 
different from that of Kripke). Tableau proof systems are defined using signed formulas 
(due to R. Smullyan), a device which simplifies the treatment. Three completeness 
proofs are presented (one for an axiom system, two for tableau systems), one due to 
Kripke [13], one due independently to R. Thomason [21] and the author, and one due to 
the author. We present proofs of compactness and Löwenheim-Skolem theorems. 
Adapting a method of Cohen, we establish a few connections between classical and 
intuitionistic logic. In the propositional case we give the relationship between Kripke 



models and algebraic ones [16] (which provides a fourth completeness proof in the 15 
propositional case). Finally we present Schütte’s proof of the intuitionistic Craig 
interpolation lemma [17], adapted to Kleene’s tableau system G3 as modified by the use 
of signed formulas. No attempt is made to use methods of proof acceptable to 
intuitionists. 

Chapter 7 begins part II. In it we define the notion of an intuitionistic 
Zermelo-Fraenkel (ZF) model, and the intuitionistic generalization of the Gödel Mα 
sequence. Most of the chapter is devoted to showing the class models resulting from the 
sequences of intuitionistic models are intuitionistic ZF models. This result is 
demonstrated in rather complete detail, especially sections 8 through 13, not because the 
work is particularly difficult, but because such models are comparatively unfamiliar. 

In chapter 8 the independence of the axiom of choice is shown. 
In chapter 9 we show how ordinals and cardinals may be represented in the 

intuitionistic models, and establish when such representatives exist. 
Chapter l0 establishes the independence of the continuum hypothesis. 
In Chapter 11 we give a way to represent constructable sets in the intuitionistic 

models, and establish when such representatives exist. 
Chapter 12 establishes the independence of the axiom of constructability. 
Chapter 13 is a collection of various results. We establish a connection between the 

sequences of intuitionistic models and the classical Mα sequence. We give some 
conditions under which the axiom of choice and the generalized continuum hypothesis 
will be valid in the intuitionistic class models (thus completing chapters 10 and 12). 
Finally we present Vopênka’s method for producing classical non-standard set theory 
models from the intuitionistic class models without countability requirements [26]. 

The set theory work to this point is self-contained, given a knowledge of the Gödel 
consistency proof ([4], in more detail [3]). 

In chapter 14 we present Scott and Solovay’s notion of boolean valued models for set 
theory [19]. We define an intuitionistic (or forcing) generalization of the Rα sequence 
(sets with rank) analogous to the Cohen generalization of the Mα sequence, and we 
establish some connections between intuitionistic and boolean valued models for set 
theory. 19











PART I – LOGIC 
 
CHAPTER I 
 
PROPOSITIONAL INTUITIONISTIC LOGIC 
 
SEMANTICS 
 
§ 1. Formulas 
 
We begin with a denumberable set of propositional variables A, B, C, three binary 

connectives ∧, ∨, →, and one unary connective ∼, together with left and right 
parentheses (, ). We shall informally use square and curly brackets [, ], {, } for 
parentheses, to make reading simpler. The notion of well formed formula, or simply 
formula, is given recursively by the following rules: 

 
F0. If A is a propositional variable, A is a formula. 
Fl. If X is a formula, so is ∼X. 
F2, 3, 4. If X and Y are formulas, so are (X ∧ Y), (X ∨Y), (X → Y). 
 
Remark 1.1: A propositional variable will sometimes be called an atomic formula. 
 
It can be shown that the formation of a formula is unique. That is, for any given 

formula X, one and only one of the following can hold: 
(1). X is A for some propositional variable A. 
(2). There is a unique formula Y such that X is ∼Y. 
(3). There is a unique pair of formulas Y and Z and a unique binary connective b (∧, 

∨ or →) such that X is (Y b Z). We make use of this uniqueness of decomposition but do 
not prove it here. 
We shall omit writing outer parentheses in a formula when no confusion 20 can result. 
Until otherwise stated, we shall use A, B and C for propositional variables, and X, Y and 
Z to represent any formula. 

The notion of immediate subformula is given by the following rules: 
I0. A has no immediate subformula. 
Il. ∼X has exactly one immediate subformula: X. 
I2, 3, 4. (X ∧ Y), (X ∨ Y), (X → Y) each has exactly two immediate subformulas: X 

and Y. 
The notion of subformula is defined as follows: 
S0. X is a subformula of X. 
S1. If X is an immediate subformula of Y, then X is a subformula of Y. 
S2. If X is a subformula of Y and Y is a subformula of Z, then X is a subformula of Z. 
By the degree of a formula is meant the number of occurrences of logical 

connectives (∼, ∧, ∨, →) in the formula. 
 
§ 2. Models and validity 
 
By a (propositional intuitionistic) model we mean an ordered triple <G, R, |= >, 

where G is a non-empty set, R is a transitive, reflexive relation on G, and |= 
(conveniently read “forces”) is a relation between elements of G and formulas, 
satisfying the following conditions: 

For any Γ ∈ G 



P0. If Γ |= A and ΓRΔ then Δ |= A (recall A is atomic). 
P1. Γ |= (X ∧ Y) iff Γ |= X and Γ |= Y. 
P2. Γ |= (X ∨ Y) iff Γ |= X or Γ |= Y. 
P3. Γ |= ∼X iff for all Δ ∈ G such that ΓRΔ, Δ =| X. 
P4. Γ |= (X → Y) iff for all Δ ∈ G such that ΓRΔ, if Δ |= X, then Δ |= Y. 
 
Remark 2.1: For Γ ∈ G, by Γ* we shall mean any Δ ∈ G such that ΓRΔ. Thus “for 

all Γ*, ϕ(Γ*)” shall mean “for all Δ ∈ G such that ΓRΔ, ϕ(Δ)”; and “there is a Γ* such 
that ϕ(Γ*)” shall mean “there is a Δ ∈ G such that ΓRΔ and ϕ(Δ)”. Thus P3 and P4 can 
be written more simply as: 

 P3. Γ |= ∼X iff for all Γ*, Γ* =| X. 
P4. Γ |= (X → Y) iff for all Γ*, if Γ* |= X, then Γ* |= Y. 
 
A particular formula X is called valid in the model <G, R, |= > if for all Γ ∈ G, Γ |= 

X. X is called valid if X is valid in all models. We will show 21 later that the collection of 
all valid formulas coincides with the usual collection of propositional intuitionistic logic 
theorems. 

When it is necessary to distinguish between validity in this sense and the more usual 
notion, we shall refer to the validity defined above as intuitionistic validity, and the 
usual notion as classical validity. This notion of an intuitionistic model is due to Saul 
Kripke, and is presented, in different notation, in [13]. See also [18]. Examples of 
models will be found in section 5, chapter 2. 
 

§ 3. Motivation 
 
Let <G, R, |= > be a model. G is intended to be a collection of possible universes, or 

more properly, states of knowledge. Thus a particular Γ in G may be considered as a 
collection of (physical) facts known at a particular time. The relation R represents 
(possible) time succession. That is, given two states of knowledge Γ and Δ of G, to say 
ΓRΔ is to say: if we now know Γ, it is possible that later we will know Δ. Finally, to 
say Γ |= X is to say: knowing Γ, we know X, or: from the collection of facts Γ, we may 
deduce the truth of X. 

Under this interpretation condition P3 of the last section, for example, may be 
interpreted as follows: from the facts Γ we may conclude ∼X if and only if from no 
possible additional facts can we conclude X. 

We might remark that under this interpretation it would seem reasonable that if Γ |= 
X and ΓRΔ, then Δ |= X, that is, if from a certain amount of information we can deduce 
X, given additional information, we still can deduce X, or if at some time we know X is 
true, at any later time we still know X is true. We have required that this holds only for 
the case that X is atomic, but the other cases follow. 

For other interpretations of this modeling, see the original paper [13]. For a different 
but closely related model theory in terms of forcing see [5]. 

 
 
§ 4. Some properties of models 
 
Lemma 4.1: Let <G, R, |= > and <G, R, |=’> be two models such that for any 

atomic formula A and any Γ ∈ G, Γ |= A iff Γ |=’ A. Then |= and |=’ are identical. 22 
Proof: We must show that for any formula X, 



 
Γ |= X ⇔ Γ |=’ X. 

 
This is done by induction on the degree of X and is straightforward. We present one 

case as an example. 
Suppose X is ∼Y and the result is known for all formulas of degree less than that of X 

(in particular for Y). We show it for X: 
 

Γ |=X ⇔ Γ |= ∼Y (by definition) 
⇔ (∀Γ*) (Γ* =| Y) (by hypothesis) 
⇔ (∀Γ*) (Γ* =|’ Y) (by definition) 
⇔ Γ |=’ ∼Y 
⇔ Γ |=’ X. 

 
Lemma 4.2: Let G be a non-empty set and R be a transitive, reflexive relation on G. 

Suppose |= is a relation between elements of G and atomic formulas. Then |= can be 
extended to a relation |=’ between elements of G and all formulas in such a way that 
<G, R, |=’> is a model. 

Proof: We define |=’ as follows: 
(0). if Γ |= A then Γ* |=’ A, 
(1). Γ |=’ (X ∧ Y) if Γ |=’ X and Γ |=’ Y, 
(2). Γ |=’ (X ∨ Y) if Γ |=’ X or Γ |=’ Y, 
(3). Γ |=’ ∼X if for all Γ*, Γ* =|’ X, 
(4). Γ |=’ (X → Y) if for all Γ*, if Γ* |=’ X, then Γ* |=’ Y. 
This is an inductive definition, the induction being on the degree of the formula. It is 

straightforward to show that <G, R, |=’> is a model. 
From lemmas 4.1 and 4.2 we immediately have 
Theorem 4.3: Let G be a non-empty set and be R a transitive, reflexive relation on 

G. Suppose |= is a relation between elements of G and atomic formulas. Then |= can be 
extended in one and only one way to a relation, also denoted by |=, between elements of 
G and formulas, such that <G, R, |= > is a model. 

Theorem 4.4: Let <G, R, |= > be a model, X a formula and Γ, Δ ∈ G. If Γ |= X and 
ΓRΔ, then Δ |= X. 

Proof: A straightforward induction on the degree of X (it is known already for X 
atomic). For example, suppose the result is known for X, and Γ |= ∼X. By definition, for 
all Γ*, Γ* =| X. But ΓRΔ and R is transitive so any R-successor of Δ is an R-successor 
of Γ. Hence for all Δ*, Δ* =| X, so Δ |= ∼X. The other cases are similar. 23 

 
§ 5. Algebraic models 
 
In addition to the Kripke intuitionistic semantics presented above, there is an older 

algebraic semantics: that of pseudo-boolean algebras. In this section we state the 
algebraic semantics, and in the next we prove its equivalence with Kripke’s semantics. 
A thorough treatment of pseudoboolean algebras may be found in [16]. 

 
Definition 5.1: A pseudo-boolean algebra (PBA) is a pair <B, ≤> where B is a 

non-empty set and ≤ is a partial ordering relation on B such that for any two elements a 
and b of B: 

(1). the least upper bound (a ∪ b) exists. 



(2). the greatest lower bound (a ∩ b) exists. 
(3). the pseudo complement of a relative to b (a ⇒ b), defined to be the largest x ∈ B 

such that a ∩ x ≤ b, exists. 
(4). a least element ∧  exists. 
 
Remark 5.2: In the context ⇒ is a mathematical symbol, not a metamathematical 

one. 
 
Let –a be a ⇒ ∧  and ∨  be –∧ . 
 
Definition 5.3: h is called a homomorphism (from the set W of formulas to the PBA 

<B, ≤>) if h: W→B and 
(1). h(X ∧ Y) = h(X) ∩ h(Y), 
(2). h(X ∨ Y) = h(X) ∪ h(Y), 
(3). h(∼X) = –h(X), 
 (4). h(X → Y) = h(X) ⇒ h(Y). 
 If <B, ≤> is a PBA and h is a homomorphism, the triple <B, ≤, h> is called an 

(algebraic) model for the set of formulas W. If X is a formula, X is called 
(algebraically) valid in the model <B, ≤, h> if h(X) = ∨. X is called (algebraically) 
valid if X is valid in every model. 

A proof may be found in [16] that the collection of all algebraically valid formulas 
coincides with the usual collection of intuitionistic theorems. 

 
§ 6. Equivalence of algebraic and Kripke validity 
 
First let us suppose we have a Kripke model <G, R, |= > (we will not use the name 

“Kripke model” beyond this section). We will define an algebraic 24 model <B, ≤, h> 
such that for any formula X 

 
h(X) = ∨  iff for all Γ ∈ G, Γ |= X. 

 
Remark 6.1: The following proof is based on exercise LXXXVI of [2]. 
 
Definition 6.1: If b ⊆ G, we call b R-closed if whenever Γ ∈ b and ΓRΔ, then Δ ∈ b. 
 
We take for B the collection of all R-closed subsets of G. For the ordering relation ≤ 

we take set inclusion ⊆. Finally we define h by 
 

h(X) = {Γ ∈ G Γ |= X}. 
 
It is fairly straightforward to show that <B, ≤> is a PBA. Of the four required 

properties, the first two are left to the reader. We now show: 
If a, b ∈ B, there is a largest x ∈ B such that a ∩ x ≤ b. 
We first note that the operations ∪ and ∩ are just the ordinary union and intersection. 

Now let p be the largest R-closed subset of (G ÷ a) ∪ b (where by ÷ we mean ordinary 
set complementation). We will show that for all x ∈ B 

x ≤ p iff a ∩ x ≤ b, 
which suffices. 

Suppose x ≤ p. Then 



 
x ⊆ (G ÷ a) ∪ b, 

a ∩ x ⊆ a ∩ [(G ÷ a) ∪ b], 
a ∩ x ⊆ a ∩ b, 
a ∩ x ⊆ b, 
a ∩ x ≤ b. 

 
Conversely suppose a ∩ x ≤ b. Then 
 

(a ∩ x) ∪ (x ÷ a) ⊆ b ∪ (a ÷ x) 
x ⊆ b ∪ (a ÷ x) 
x ⊆ b ∪ (G ÷ a) 

  
but x ∈ B, so x is R-closed. Hence 

 
x ⊆ p, 
x ≤ p. 

 
The reader may verify that ∅ ∈ B and is a least element. 
Next we remark that h is a homomorphism. We demonstrate only one of the four 

cases, case (4). Thus we must show that h(X → Y) is the largest 25 x ∈ B such that 
 

h(X) ∩ x ≤ h(Y). 
 
First we show 
 

h(X) ∩ h(X → Y) ≤ h(Y), 
 
that is 
 

{ΓΓ |= X} ∩ {ΓΓ |= X → Y} ⊆ { ΓΓ |= Y}. 
 
But it is clear from the definition that 
 

if Γ |= X and Γ |=X → Y, then Γ |=Y. 
 
Next suppose there is some b ∈ B such that h(X) ∩ b ≤ h(Y) but h(X → Y) < b. Then 

there must be some Γ ∈ G such that Γ ∈ b but Γ ∉ h(X → Y), i.e. Γ =| X → Y. Since Γ 
=| X → Y, there must be some Γ*such that Γ*|= X but Γ*=| Y. Since b is R-closed, Γ* ∈ 
b. But also Γ* ∈ h(X), so Γ* ∈ h(X) ∩ b, and so by assumption Γ* ∈ h(Y), that is Γ* 
|=Y, a contradiction. Thus h(X → Y) is largest. 

Thus <B. ≤, h> is an algebraic model. We leave it to the reader to verify that the unit 
element ∨  of B is G itself. Hence 

 
h(X) = ∨  iff for all Γ ∈ G, Γ |= X. 

 
Conversely, suppose we have an algebraic model <B, ≤, h>. We will define a Kripke 

model <G, R, |= > so that for any formula X 
 



h(X) = ∨  iff for all Γ ∈ G, Γ |= X. 
 

Lemma 6.2: Let F be a filter in B and suppose (a ⇒ b) ∉ F. Then the filter 
generated by F and a does not contain b. 

Proof: If the filter generated by F and a contained b, then ([16] p. 46, 8.2) for some c 
∈ F, c ∩ a ≤ b. So c ≤ (a ⇒ b) and hence (a ⇒ b) ∈ F by [16], p. 46, 8.2 again. 

 
Lemma 6.3: Let F be a proper filter in B and suppose –a ∉ F. Then the filter 

generated by F and a is also proper. 
Proof: By lemma 6.2, since –a = (a ⇒ ∧). 
 
Lemma 6.4: Let F be a filter in B and suppose a ∉ F. Then F can be extended to a 

prime filter P such that a ∉ P. 
Proof: (This is a slight modification of [16], p. 49, 9.2, included for completeness.) 

Let O be the collection of all filters in B not containing a. O is partially ordered by ⊆. O 
is non-empty since F ∈ O. 26 Any chain in O has an upper bound since the union of any 
chain of filters is a filter. So by Zorn’s lemma O contains a maximal element P. Of 
course a ∉ P. We need only show P is prime. 

Suppose P is not prime. Then for some a1, a2 ∈ B 
 

a1 ∪ a2 ∈ P, a1 ∉ P, a2 ∉ P. 
 
Let S1 be the filter generated by P and a1, and S2 be the filter generated by P and a2. 
Suppose a ∈ S1 and a ∈ S2. Then [16, p. 46, 8.2] for some c1, c2 ∈ P, a1 ∩ c1 ≤ a and 

a2 ∩ c2 ≤ a. So for c = c1 ∩ c2, a1 ∩ c ≤ a and a2 ∩ c ≤ a, hence (a1 ∪ a2) ∩ c ≤ a. But c 
∈ P and (a1 ∪ a2) ∈ P, so a ∈ P. But a ∉ P, so either a ∉ S1 or a ∉ S2. 

Suppose a ∉ S1. By definition S1 ∈ O. But S1 is the filter generated by P and a1, 
hence P ⊆ S1. So P is not maximal, a contradiction. Similarly if a ∉ S2. Thus P is 
prime. 

 
Now we proceed with the main result. Recall that we have <B, ≤, h>. Let G be the 

collection of all proper prime filters in B. Let R be set inclusion ⊆. For any Γ ∈ G and 
any formula X, let Γ |= X if h(X) ∈ Γ. 

To show the resulting structure <G, R, |= > is a model, we note property P0 is 
immediate. To show P1: 

Γ |= (X ∧ Y) iff h(X ∧ Y) ∈ Γ 
iff h(X) ∩ h(Y) ∈ Γ 
iff h(X) ∈ Γ and h(Y) ∈ Γ 
iff Γ |= X and Γ |= Y 

 
(using the facts that h is a homomorphism and Γ is a filter). Similarly we show P2 using 
the fact that Γ is prime. To show P3: 

 
Suppose Γ |= ∼X. Then h(∼X) ∈ Γ so 
 

(∀Δ ∈ G) (Γ ⊆ Δ implies h(∼X) ∈ Δ), 
(∀Δ ∈ G) (Γ ⊆ Δ implies h(X) ∉ Δ), 



(∀Δ ∈ G) (ΓRΔ implies Δ =| X), 
 

i.e. for all Γ*, Γ* =| X (using the fact that h(∼X) ∈ Δ and h(X) ∈ Δ imply –h(X) ∩ h(X) 
∈ Δ, so ∧ ∈ Δ and Δ is not proper). 

Suppose Γ =| ∼X. Then h(∼X) ∉ Γ, or –h(X) ∉ Γ. By lemma 6.3 the filter generated 
by Γ and h(X) is proper. By lemma 6.4 this filter can be 27 extended to a proper prime 
filter Δ. Then Γ ⊆ Δ and h(X) ∈ Δ. So (∃Δ ∈ G)(ΓRΔ and Δ |= X), i.e. for some Γ*, Γ* 
|= X. 

P4 is shown in the same way, but using lemma 6.2 instead of lemma 6.3. Thus <G, 
R, |= > is a model. 

Finally, to establish the desired equivalence, suppose first h(X) = ∨. Since ∨ is an 
element of every filter, for all Γ ∈ G, Γ |= X. Conversely suppose h(X) ≠ ∨. But {∨} is a 
filter and h(X) ∉{∨}. By lemma 6.4 we can extend {∨} to a proper prime filter Γ such 
that h(X) ∉ Γ. Thus Γ ∈ G and Γ =| X. 

Thus we have shown 
 
Theorem 6.5: X is Kripke valid if and only if X is algebraically valid. 28  
 



CHAPTER 2 
 
PROPOSITIONAL INTUITIONISTIC LOGIC 
 
PROOF THEORY 
 
§ 1. Beth tableaus 
 
In this section we present a modified version of a proof system due originally to Beth. It 

is based on [2, § 145], but at the suggestion of R. Smullyan, we have introduced signed 
formulas and single trees in place of the unsigned formulas and dual trees of Beth. 

By a signed formula we mean TX or FX where X is a formula. If S is a set of signed 
formulas and H is a single signed formula, we will write S ∪{H} simply as {S, H} or 
sometimes S, H. 

First we state the reduction rules, then we describe their use; S is any set (possibly 
empty) of signed formulas, and X and Y are any formulas: 

 
 S, T(X ∧ Y)  S, F(X ∧ Y) 

T∧: –––––––––– F∧: ––––––––––– 
 S, TX, TY  S, FXS, FY 
    
 S, T(X ∨ Y)  S, F(X ∨ Y) 

T∨:  ––––––––––– F∨: ––––––––––– 
 S, TXS, TY  S, FX, FY 
    
 S, T(∼X)  S, F(∼X) 

T∼: –––––––––––– F∼: ––––––––––– 
 S, FX  ST, TX 
    

 S, T(X → Y)  S, F(X→Y) 
T→:  ––––––––––––– F→: ––––––––––– 

 S, FX  S, TY  ST, TX, FY 
 
In rules F∼ and F→ above, ST means {TX  TX ∈ S}. 29  
Remark 1.1: S is a set, and hence {S, TX} is the same as {S, TX, TX}. Thus duplication 

and elimination rules are not necessary. 
 
If U is a set of signed formulas, we say one of the above rules, call it rule R, applies to U 

if by appropriate choice of S, X and Y the collection of signed formulas above the line in 
rule R becomes U. 

By an application of rule R to the set U we mean the replacement of U by U1 (or by U1 
and U2 if R is F∧, T∨ or T→) where U is the set of formulas above the line in rule R (after 
suitable substitution for S, X and Y) and U1 (or U1, U2 is the set of formulas below. This 
assumes R applies to U. Otherwise the result is again U. For example, by applying rule F→ 
to the set {TX, FY, F(Z →W)} we may get the set {TX, TZ, FW}. By applying rule T∨ to the 
set {TX, FY, T(Z ∨ W)} we may get the two sets {TX, FY, TZ} and {TX, FY, TW}. 



By a configuration C we mean a finite collection {S1, S2, …, Sn} of sets of signed 
formulas. 

By an application of the rule R to the configuration {S1, S2, …, Sn} we mean the 
replacement of this configuration with a new one which is like the first except for 
containing instead of some Si the result (or results) of applying rule R to Si. 

By a tableau we mean a finite sequence of configurations C1, C2, …, Cn in which each 
configuration except the first is the result of applying one of the above rules to the 
preceding configuration. 

A set S of signed formulas is closed if it contains both TX and FX for some formula X. A 
configuration {S1, S2, …, Sn} is closed if each Si, in it is closed. A tableau C1, C2, …, Cn is 
closed if some Ci in it is closed. 

By a tableau for a set S of signed formulas we mean a tableau C1, C2, …, Cn, in which 
C1 is {S}. A finite set of signed formulas S is inconsistent if some tableau for S is closed. 
Otherwise S is consistent. 

X is a theorem if {FX} is inconsistent, and a closed tableau for {FX} is called a proof of 
X. If X is a theorem we write | I X. 

We will show in the next few sections the correctness and completeness of the above 
system relative to the semantics of ch. 1. 

Examples of proofs in this system may be found in § 5. 
The corresponding classical tableau system is like the above, but in rules F∼ and F→, ST 

is replaced by S (see [20]). The interpretations of the classical and intuitionistic systems are 
different. 30 

In the classical system TX and FX mean X is true and X is false respectively. The rules 
may be read: if the situation above the line is the case, the situation below the line is also 
(or one of them is, if the rule is disjunctive: F∧, T∨, T→). Thus TX means the same as X, 
and FX means ∼X. Classically the signs T and F are dispensable. Proof is a refutation 
procedure. Suppose X is not true (begin a tableau with FX). Conclude that some formula 
must be both true and not true (a closed configuration is reached). Since this can not 
happen, X is true. 

In the intuitionistic case TX is to mean X is known to be true (X is proven). FX is to 
mean X is not known to be true (X has not been proved). The rules are to be read: if the 
situation above the line is the case, then the situation below the line is possible, i.e. 
compatible with our present knowledge (if the rule is disjunctive, one of the situations 
below the line must be possible). For example consider rule F→. If we have not proved X 
→ Y, it is possible to prove X without proving Y, for if this were not possible, a proof of Y 
would be “inherent” in a proof of X, and this fact would constitute a proof of X → Y. But 
we have ST below the line in this rule and not S because in proving X we might 
inadvertently verify some additional previously unproven formula (some FZ ∈ S might 
become TZ). Similarly for F∼. The proof procedure is again by refutation. Suppose X is not 
proven (begin a tableau with FX). Conclude that it is possible that some formula is both 
proven and not proven. Since this is impossible, X is proven. 

We have presented this system in a very formal fashion because it makes talking about it 
easier. In practice there are many simplifications which will become obvious in any attempt 
to use the method. Also, proofs may be written in a tree form. We find the resulting 
simplified system the easiest to use of all the intuitionistic proof systems, except in some 
cases, the system resulting by the same simplifications from the closely, related one 



presented in ch. 6 § 4. A full treatment of the corresponding classical tableau system, with 
practical simplifications, may be found in [20]. 

 
§ 2. Correctness of Beth tableaus 
 
Definition 2.1: We call a set of signed formulas 
 

{TX1, ..., TXn, FY1,.., FYm} 31



 
realizable if there is some model <G, R, |= > and some Γ ∈ G such that Γ |= X1, …, Γ 
|= Xn, Γ =| Y1, …, Γ =| Ym.  We say that Γ realizes the set. 

If {S1, S2, …, Sn} is a configuration, we call it realizable if some Si in it is realizable. 
 
Theorem 2.2: Let C1, C2, ..., Cn be a tableau. If Ci is realizable, so is Ci+1. 
Proof: We have eight cases, depending on the rule whose application produced Ci+1 

from Ci. 
 Case (1): Ci is {…, {S, T(X ∨ Y)},...} and Ci+1 is {..., {S, TX}, {S, TY}, ... }. Since 

Ci is realizable, some element of it is realizable. If that element is not {S, T(X ∨ Y)}, the 
same element of Ci+1. is realizable. If that element is {S, T(X ∨ Y)}, then for some 
model <G, R, |= > and some Γ ∈ G, Γ realizes {S, T(X ∨ Y)}. That is, Γ realizes S and 
Γ |= (X ∨ Y). Then Γ |= X or Γ |=Y, so either Γ realizes {S, TX} or {S, TY}. In either case 
Ci+1 is realizable. 

Case (2): Ci is {…, {S, F(∼X)}, ...} and Ci+1 is {...,{ST, TX},...}. Ci is realizable, and 
it suffices to consider the case that {S, F(∼X)} is the realizable element. Then there is a 
model <G, R, |= > and a Γ ∈ G such that Γ realizes S and Γ =| ∼X. Since Γ =| ∼X, for 
some Γ* ∈ G, Γ* |= X. But clearly, if Γ realizes S, Γ* realizes ST (by theorem 1.4.4). 
Hence Γ* realizes {ST, TX} and Ci+1 is realizable. 

The other six cases are similar. 
 
Corollary 2.3: The system of Beth tableaus is correct, that is, if | I X, X is valid. 
Proof: We show the contrapositive. Suppose X is not valid. Then there is a model 

<G, R, |= > and a Γ ∈ G such that Γ =| X. In other words {FX} is realizable. But a proof 
of X would be a closed tableau C1, C2,…, Cn in which C1 is {{FX}}. But C1 is 
realizable, hence each Ci is realizable. But obviously a realizable configuration cannot 
be closed. Hence | I X. 

 
§ 3. Hintikka collections 
 
In classical logic a set S of signed formulas is sometimes called downward saturated, 

or a Hintikka set, if 
 
TX ∧ Y ∈ S ⇒ TX ∈ S and TY ∈ S, 
FX ∨ Y ∈ S ⇒ FX ∈ S and FY ∈ S, 32 
TX ∨ Y ∈ S ⇒ TX ∈ S or TY ∈ S, 
FX ∧ Y ∈ S ⇒ FX ∈ S or FY ∈ S, 

T∼X ∈ S ⇒ FX ∈ S, 
TX → Y ∈ S ⇒ FX ∈ S or TY ∈ S, 

F∼X ∈ S ⇒ TX ∈ S, 
FX → Y ∈ S ⇒ TX ∈ S and FY ∈ S. 
 
Remark 3.1: The names Hintikka set and downward saturated set were given by 

Smullyan [20]. Hintikka, their originator, called them model sets. 
Hintikka showed that any consistent downward saturated set could be included in a 

set for which the above properties hold with ⇒replaced by ⇔. From this follows the 
completeness of certain classical tableau systems. This approach is thoroughly 
developed by Smullyan in [20]. 



We now introduce a corresponding notion in intuitionistic logic, which we call a 
Hintikka collection. While its intuitive appeal may not be as immediate as in the 
classical case, its usefulness is as great. 

 
Definition 3.2: Let G be a collection of consistent sets of signed formulas. We call G 

a Hintikka collection if for any Γ ∈ G 
 
TX ∧ Y ∈ Γ ⇒ TX ∈ Γ and TY ∈ Γ, 
FX ∨ Y ∈ Γ ⇒ FX ∈ Γ and FY ∈ Γ, 
TX ∨ Y ∈ Γ ⇒ TX ∈ Γ or TY ∈ Γ, 
FX ∧ Y ∈ Γ ⇒ FX ∈ Γ or FY ∈ Γ, 

T∼X ∈ Γ ⇒ FX ∈ Γ, 
TX → Y ∈ Γ ⇒ FX ∈ Γ or TY ∈ Γ, 

F∼ X ∈ Γ ⇒ for some Δ ∈ G, ΓT ⊆ Δ and TX ∈ Δ, 
FX → Y ∈ Γ ⇒ for some Δ ∈ G, ΓT ⊆ Δ and TX ∈ Δ, FY ∈ Δ . 
 
Definition 3.3: Let G be a Hintikka collection. We call <G, R, |= > a model for G if 
(1). <G, R, |= > is a model, 
(2). ΓT ⊆ Δ ⇒ ΓRΔ, 
(3). TX ∈ Γ ⇒ Γ |= X, FX ∈ Γ ⇒ Γ =| X. 
 
Theorem 3.4: There is a model for any Hintikka collection. 
Proof: Let G be a Hintikka collection. Define R by: ΓRΔ if ΓT ⊆ Δ. 33 If A is atomic, 

let Γ |= A if TA ∈ Γ, and extend |= to produce a model <G, R, |= >. To show property 
(3) is a straightforward induction on the degree of X. We give one case as illustration. 
Suppose X is ∼Y and the result is known for Y. Then 

 
T∼Y ∈ Γ ⇒ (∀Δ ∈ G)(ΓT ⊆ Δ ⇒T∼X ∈ Δ) 

⇒ (∀Δ ∈ G)(ΓT ⊆ Δ ⇒ FY ∈ Δ) 
⇒ (∀Δ ∈ G)(ΓRΔ ⇒Δ =| Y) 
⇒Γ |= ∼Y, 

and 
 
F∼Y ∈ Γ ⇒ (∃Δ ∈ G)(ΓT ⊆ Δ and TY ∈ Δ) 

⇒ (∃Δ ∈ G)(ΓRΔ and Δ |= Y) 
⇒Γ =| ∼Y. 

  
It follows from this theorem that to show the completeness of Beth tableaus we need 

only show the following: If | I X, then there is a Hintikka collection G such that for 
some Γ ∈ G, FX ∈ Γ. 

 
§ 4. Completeness of Beth tableaus 
 
Let S be a set of signed formulas. By S(S) we mean the collection of all signed 

subformulas of formulas in S. If S is finite, S(S) is finite. 
Let S be a finite, consistent set of signed formulas. We define a reduced set for S 

(there may be many) as follows: 



Let S0 be S. Having defined S, a finite consistent set of signed formulas, suppose one 
of the following Beth reduction rules applies to S: T∧, F∧, T∨, F∨, T∼ or T→. Choose 
one which applies, say F∧. Then Sn is {U, FX ∧ Y}. This is consistent, so clearly either 
{U, FX ∧Y, FX} or {U, FX ∧ Y, FY} is consistent. Let Sn+1 be {U, FX ∧ Y, FX} if 
consistent, otherwise let Sn+1 be {U, FX ∧ Y, FY}. Similarly if T∧ applies and was 
chosen, then Sn is {U, TX ∧ Y}. Since this is consistent, {U, TX ∧ Y, TX, TY} is 
consistent. Let this be Sn+1. In this way we define a sequence S0, S1, S2, ... This sequence 
has the property Sn ⊆ Sn+1. Further, each Sn is finite and consistent. Since each Sn ⊆ 
S(S), there are only a finite number of different possible Sn. Consequently there must be 
a member of the sequence, say Sn, such that the application of any one of the rules 
(except F∼ or F→) produces Sn again. Call such an Sn a reduced set of S, and denote it 
by S’. Clearly any finite, consistent set of 34 signed formulas ha a finite, consistent 
reduced set. Moreover, if S’ is a reduced set, it has the following suggestive properties: 

 
TX ∧ Y ∈ S’ ⇒ TX ∈ S’ and TY ∈ S’, 
FX ∨ Y ∈ S’ ⇒ FX ∈ S’ and FY ∈ S’,  
TX ∨ Y ∈ S’ ⇒ TX ∈ S’ or TY ∈ S’, 
FX ∧ Y ∈ S’ ⇒ FX ∈ S’ or FY ∈ S’, 

T∼X ∈ S’ ⇒ FX ∈ S’, 
TX → Y ∈ S’ ⇒ FX ∈ S’ or TY ∈ S’, 
S' is consistent. 
 
Now, given any finite, consistent set of signed formulas S, we form the collection of 

associated sets as follows: 
 
If F∼X ∈ S, {ST, TX} is an associated set. 
If FX → Y ∈ S, {ST, TX, FY} is an associated set. 
 
Let A(S) be the collection of all associated sets of S. A(S) is finite, since U ∈ A(S) 

implies U ⊆ S(S) and S(S) is finite. A(S) has the following properties: if S is 
consistent, any associated set is consistent and 

 
F∼X ∈ S ⇒ for some U ∈ A(S) ST ⊆ U, TX ∈ U, 

FX → Y ∈ S ⇒ for some U ∈ A(S) ST ⊆ U, TX ∈ U, FY ∈ U. 
 
Now we proceed with the proof of completeness. 
Suppose | I X. Then {FX} is consistent. Extend it to its reduced set S0. Form 

A(S0). Let the elements of d A(S0) be U1, U2, ... , Un. Let S1 be the reduced set of U1, ... 
, Sn be the reduced set of Un. Thus, we have the sequence S0, S1, S2, ... , Sn. 

Next form A(S1). Call its elements Un+1, Un+2, … Um. Let Sn+1 be the reduced set of 
Un+1 and so on. Thus, we have the sequence S0, S1,… , Sn, Sn+1, … , Sm. Now we repeat 
the process with S2, and so on. 

In this way we form a sequence S0, S1, S2, .... Since each Si ⊆ S(S), there are only 
finitely many possible different Si. Thus we must reach a point Sk of the sequence such 
that any continuation repeats on earlier member. 

Let G be the collection {S0, S1, ... , Sk}. It is easy to see that G is a Hintikka 
collection. But FX ∈ S0 ∈ G. Thus we have shown: 

 
Theorem 4.1: Beth tableaus are complete. 35  



 
Remark 4.2: This proof also establishes that propositional intuitionistic logic is 

decidable. For, if we follow the above procedure beginning with FX, after a finite 
number of steps we will have either a closed tableau for {FX} or a counter-model for X. 
Moreover, the number of steps may be bounded in terms of the degree of X. 

 
The completeness proof presented here is in essence the original proof of Kripke 

[13]. For a different tableau completeness proof see ch. 5 § 6, where it is given for first 
order logic. For a completeness proof of an axiom system see eh. 5 § 10, where it also is 
given for a first order system. The work in ch. I § 6 provides an algebraic completeness 
proof, since the Lindenbaum algebra of intuitionistic logic is easily shown to be a 
pseudo-boolean algebra. See [16]. 

 
§ 5. Examples 
 
In this section, so that the reader may gain familiarity with the foregoing, we present 

a few theorems and non-theorems of intuitionistic propositional logic, together with 
their proofs or counter-models. 

We show 
 
(1). | I A ∨ ∼A, 
(2). | I ∼ ∼(A ∨ ∼A), 
(3). | I ∼ ∼A → A, 
(4). | I (A ∨ B) → ∼ (∼A ∧ ∼B), 
(5). | I ∼ ∼(A ∨ B) → (∼ ∼A ∧ ∼ ∼B). 

 
For the general principle connecting (1) and (2) see ch. 4 § 8. 

 
(1). | I A ∨ ∼A. 
 
A counter example for this is the following: 
 

G = {Γ, Δ} 
ΓRΓ, ΓRΔ, ΔRΔ. 

 
Δ |= A is the |= relation for atomic formulas, and |= is extended to all formulas as usual. 
We may schematically represent this model by 

 
Γ 
 
Δ |=A 36 

 
We claimΓ =| A ∨ ∼A. Suppose not. If Γ |= A ∨ ∼A, either Γ |= A Γ |= ∼A. But Γ =| A. If 
Γ |= ∼A then since ΓRΔ, Δ =| A. But Δ |= A, hence Γ =| A ∨ ∼A. 

  
(2). | I ∼ ∼(A ∨ ∼A). 
 
A tableau proof for this is the following, where the reasons for the steps are obvious: 
 
{{F∼ ∼(A ∨ ∼A}}, 
{{T∼(A ∨ ∼A}}, 



{{T∼(A ∨ ∼A}, F(A ∨ ∼A}}, 
{{T∼(A ∨ ∼A}, FA, F∼A}}, 
{{T∼(A ∨ ∼A}, TA}}, 
{{F(A ∨ ∼A}, TA}}, 
{{FA, F∼A}, TA}}, 
  
(3). | I ∼ ∼A → A. 
 
The model of example (1) has the property that Γ |= ∼ ∼A but Γ =| A. 
  
(4). | I (A ∨ B)→ ∼ (∼A ∧ ∼B). 
 
The following is a proof: 
 
{{F((A ∨ B)→ ∼ (∼A ∧ ∼B))}}, 
{{T(A ∨ B), F∼ (∼A ∧ ∼B)}}, 
{{T(A ∨ B), T(∼A ∧ ∼B)}}, 
{{T(A ∨ B), T∼A, T∼B}}, 
{{T(A ∨ B), FA, T∼B}}, 
{{T(A ∨ B), FA, FB}}, 
{{TA, FA, FB}, {TB, FA, FB}}. 
 
(5). | I ∼ ∼(A ∨ B)→ (∼ ∼A ∨ ∼ ∼B). 
 
A counter example is the following: 
 
G = {Γ, Δ, Ω}, 
ΓRΓ, ΔRΔ, ΩRΩ, 
ΓRΔ, ΓRΩ. 
Δ |= A, Ω |= B, is the |= relation for atomic formulas, and is extended as usual. We 

may schematically represent this model by 
 
Γ 

  
Δ |= A Ω |= B 37 

 
Now Δ |= A, so Δ |= A ∨ B. Likewise Ω |= A ∨ B. It follows that Γ |= ∼ ∼(A ∨ B). But if 
Γ |= ∼ ∼A ∨ ∼ ∼B, either Γ |= ∼ ∼A or Γ |= ∼ ∼B. If Γ |= ∼ ∼A, it would follow that Ω |= 
A. If Γ |= ∼ ∼B, it would follow that Δ |= B. Thus Γ =| ∼ ∼A ∨ ∼ ∼B. 38  
 





 
CHAPTER 3 

 
RELATED SYSTEMS OF LOGIC 
 
§ 1. f-primitive intuitionistic logic, semantics 
 
This is an alternative formulation of intuitionistic logic in which a symbol f is taken as 

primitive, instead of , which is then re-introduced as a formal abbreviation, ∼X for X → f. 
For presentations of this type, see [15] or [17]. 

Specifically, we change the definition of formula by adding f to our list of propositional 
variables and removing ∼ from the set of connectives. ∼ is re-introduced as a 
metamathematical symbol as above. Our definition of subformula is also changed 
accordingly. The definition of model is changed as follows: replace P3 (ch. 1 § 2) by P3’: Γ 
=| f. This leads to a new definition of validity, which we may call f-validity. 

 
Theorem 1.1: Let X be a formula (in the usual sense) and let X’ be the corresponding 

formula with ∼ written in terms of f. Then X is valid if and only if X’ is f-valid. 
Proof: We show that in any model <G, R, |= > 
 

Γ |= X iff Γ |= X’ 
 

(where we use two different senses of |=). The proof is by induction on the degree of X 
(which is the same as the degree of X’). Actually all cases 39 are easy except that of ∼ itself. 
So suppose the result is known for all formulas of degree less than that of X, and X is ∼Y. 
Then 

 
Γ |= X ⇔ Γ |= ∼Y 

⇔ ∀Γ* Γ* =| Y 
⇔ ∀Γ* Γ* =| Y’, 

 
but clearly this is equivalent to Γ |= Y’→ f since Γ* =| f. Hence equivalently Γ |= X’. 

 
§ 2. f-primitive intuitionistic logic, proof theory 
 
In this section we still retain the altered definition of formula in the last section with f 

primitive. We give a tableau system for this. The new system is the same as that of ch. 2 § 1 
in all but two respects. First the rules T∼ and F∼ are removed. Second a set S of signed 
formulas is called closed if it contains TX and FX for some formula X, or if it contains Tf. 

This leads to a new definition of theorem, which we may call f-theorem. 
 
Theorem 2.1: Let X be a formula (in the usual sense) and let X’ be the corresponding 

formula with → written in terms of f. Then X is a theorem if and only if X’ is an f-theorem. 
 
This follows immediately from the following: 
 



Lemma 2.2: Let S be a set of signed formulas (in the usual sense) and let S’ be the 
corresponding set of signed formulas with ∼ replaced in terms of f. Then S is inconsistent if 
and only if S’ is f-inconsistent. 

Proof: We show this in two halves. First suppose S is inconsistent. We show the result 
by induction on the length of the closed tableau for S. There are only two significant cases. 
Suppose first that the tableau for S is C1, C2, …, Cn; C1 is {{ U, F∼X}} and C2 is{{ UT, 
TX}}. Then by the induction hypothesis {{ U’T, TX’}} is f-inconsistent. Hence so is {{ U’, 
FX’ → f}}, i.e. S’. The other case is if C1 is {{U, T∼X}} and C2 is {{U, FX)}. Then by the 
induction hypothesis {U’, FX’} is f-inconsistent. Hence so is {U’, TX’→ f}, i.e. S’. 

The converse is shown by induction on the length of the closed f-tableau for S’. If this 
f-tableau is of length l, either S’ contains TX and 40 FX for some formula X, and we are 
done, or S’ contains Tf, which is not possible since we supposed S’ arose from standard set 
S. 

The induction steps are similar to those above. 
 
The results of this and the last sections, together with our earlier results give: X’ is 

f-valid if and only if X’ is an f-theorem. This is not the complete generality one would like 
since it holds only for those formulas X’ which correspond to standard formulas X. The 
more complete result is however true, as the reader may show by methods similar to those 
of the last chapter. 

 
§ 3. Minimal logic 
 
Minimal logic is a sublogic of intuitionistic logic in which a false statement need not 

imply everything. The original paper on minimal logic is Johannson’s [9]. Prawitz 
establishes several results concerning it in [15], and it is treated algebraically by Rasiowa 
and Sikorski [16]. 

Semantically, we use the f-models defined in § 1, with the change that we no longer 
require P3’, that is, that Γ = | f. Proof theoretically, we use the f-tableaus defined in §2, with 
the change that we no longer have closure of a set because it contains Tf. We leave it to the 
reader to show that X is provable in this tableau system if and only if X is valid in this 
model sense, using the methods of ch. 2. 

Certainly every minimal logic theorem is an intuitionistic logic theorem, but the 
converse is not true. For example (A ∧ ∼A ) → B is a theorem of intuitionistic logic, but the 
following is a minimal counter-model for it, or rather for (A ∧ (A→ f)) → B: 

 
G = {Γ} 
ΓRΓ 

Γ |= A, Γ |= f, 
 

and |= is extended as usual. It is easily seen that Γ |= A ∧ (A → f), but Γ =| B. 
 
§ 4. Classical logic 
 
Beginning with this section, we return to the usual notions of formula, tableau and 

model, that is, with ∼ and not f as primitive. 41



 
Some authors call a set S of unsigned formulas a (classical) truth set if 
 

X ∧ Y ∈ S ⇔ X ∈ S and Y ∈ S, 
X ∨ Y ∈ S ⇔ X ∈ S or Y ∈ S, 
∼X ∈ S ⇔ X ∉ S, 

X → Y ∈ S ⇔ X ∉ S or Y ∈ S. 
 
It is a standard result of classical logic that X is a classical theorem if and only if X is 

in every truth set. There is a proof of this in [20]. 
 
Theorem 4.1: Any intuitionistic theorem is a classical theorem. 
Proof: Suppose X is not a classical theorem. Then there is a truth set S such that X ∉ 

S. We define a very simple intuitionistic counter-model for X, <G, R, |= >, as follows: 
 

G = {S}, 
SRS, 

S |= A ⇔ A ∈ S, 
 

for A atomic, and |= is extended as usual. It is easily shown by induction on the degree 
of Y that 

 
S |= Y ⇔ Y ∈ S. 

 
Hence S =| X, and X is not an intuitionistic theorem. 

That the converse is not true follows since we showed in ch. 2 § 5 that | I A ∨ ∼A. 
Thus we have: minimal logic is a proper sub-logic of intuitionistic logic which is a 
proper sub-logic of classical logic. 

 
§ 5. Modal logic, S4; semantics 
 
In this section we define the set of (propositional) S4 theorems semantically using a 

model due to Kripke [12] (see also [18]). S4 was originated by Lewis [14], and an 
algebraic treatment may be found in [16]. A natural deduction treatment is in [15]. 

The definition of formula is changed by adding  to the set of unary connectives. 
Thus for example ∼∼(A ∨ ∼A) is a formula.  is read “necessarily”. ◊ is sometimes 
taken as an abbreviation for ∼∼ and is read “possibly”. (In [14] ◊ was primitive.) 

The S4 model is defined as follows: It is an ordered triple <G, R, |= > where G is a 
non-empty set, R is a transitive, reflexive relation on G, 42 and |= is a relation between 
elements of G and formulas, satisfying the following conditions: 

 
M1. Γ |= X ∧ Y iff Γ |= X and Γ |= Y. 
M2. Γ |= X ∨ Y iff Γ |= X or Γ |= Y. 

M3. Γ |= ∼X iff Γ =| X. 
M4. Γ |= (X → Y) iff Γ =| X or Γ |= Y. 

M5. Γ |= X iff for all Γ *, Γ* |= X. 
 
X is S4 valid in <G, R, |= > if for all Γ ∈ G, Γ |= X. X is S4 valid if X is S4 valid in 

all S4 models. 



The intuitive idea behind this modeling is the following: G is the collection of all 
possible worlds. ΓRΔ means Δ is a world possible relative to Γ. Γ |= X means X is true 
in the world Γ. Thus M5 may be interpreted: X is necessarily true in Γ if and only if X 
is true in any world possible relative to Γ. This interpretation is given in [12]. 

 
§ 6. Modal logic, S4; proof theory 
 
We define a tableau system for S4 as follows: Everything in the definition of Beth 

tableaus in ch. 2 § i remains the same except the reduction rules themselves. These are 
replaced by 

 
 S, TX ∧ Y  S, FX ∧ Y 
MT∧: –––––––––– MF∧: ––––––––––– 
 S, TX, TY  S, FXS, FY 
    
 S, TX ∨ Y  S, FX ∨ Y 
MT∨:  ––––––––––– MF∨: ––––––––––– 
 S, TXS, TY  S, FX, FY 
    
 S, T∼X  S, F∼X 
MT∼: –––––––––––– MF∼: ––––––––––– 
 S, FX  S, TX 
    
 S, TX → Y  S, FX→Y 
MT→:  ––––––––––––– MF→: ––––––––––– 
 S, FX  S, TY  S, TX, FY 
    
 S, TX  S, FX 
MT: ––––––– MF: –––––– 
 S, TX  S


, FX 

 
where in rule MF S


 is {TX  TX ∈ S}. Again the methods of ch. 2 can be 

adapted to S4 to establish the identity of the set of S4 theorems and the set of S4 valid 
formulas. This is left to the reader. The original 43 proof is in [12]. We are more 
interested in the relation between S4 and intuitionistic logic. 

 
§ 7. S4 and intuitionistic logic 
 
A map from the set of intuitionistic formulas to the set of S4 formulas is defined by 

(see [18]) 
M(A) = A for A atomic, 

M(X ∨ Y) = M(X) ∨ M(Y), 
M(X ∧ Y) = M(X) ∧ M(Y), 

M(∼X) = ∼M(X), 
M(X → Y) = (M(X) → M(Y)). 

We wish to show 
 
Theorem 7.1: If X is an intuitionistic formula, X is intuitionistically valid if and 

only if M(X) is S4-valid. 
 



This follows from the next three lemmas. 
 
Lemma 7.2: Let <G, R, |= I > be an intuitionistic model and <G, R, |= S4 > be an S4 

model, such that for any Γ ∈ G and any atomic A 
 

Γ |= I A ⇔Γ |=S4 A. 
 

Then for any formula X 
 

Γ |= I X ⇔Γ |=S4 X. 
 
Proof: A straightforward induction on the degree of X. 
 
Lemma 7.3: Given an intuitionistic counter-model for X, there is an S4 

counter-model for M(X). 
Proof: We have <G, R, |= I >, an intuitionistic model such that for some Γ ∈ G Γ |= I 

X. We take for our S4 model <G, R, |= S4 >, where |= S4 is defined by 
 

Δ |= S4 A if Δ |= I A 
 

for A atomic and any Δ in G, and |= S4 is extended to all formulas. If A is atomic 
 

Δ |= S4 M(A) ⇔ Δ |= S4 A 
⇔ |= S4 (∀Δ*)Δ*|= S4 A 
⇔ |= S4 (∀Δ*)Δ*|= I A 
⇔ Δ |= I A 

 
and the result follows by lemma 7.2. 44 

 
Lemma 7.4: Given an S4 counter-model for M(X), there is an intuitionistic counter-

model for X. 
Proof: We have <G, R, |= S4 > an S4 model such that for some Γ ∈ G Γ =| S4 M(X). 

We take for our intuitionistic model <G, R, |= I > where |= I is defined by 
 

Δ |= I A if Δ |= S4 M(A) 
 
for A atomic and any Δ in G, and |= I is extended to all formulas. Now the result follows 
by lemma 7.2. 45 
 





 
CHAPTER 4 
 
 
FIRST ORDER INTUITIONISTIC LOGIC 
 
SEMANTICS 
 
 
§ 1. Formulas 
 
We begin with the following: 
(1). denumerably many individual variables x, y, z, w, … 
(2). denumerably many individual parameters a, b, c, d, … 
(3). for each positive integer n, a denumerable list of n-ary predicates An, Bn, Cn, Dn, … 
(4). connectives, quantifiers, parentheses, ∧, ∨, →, ∼, ∃, ∀, (, ). 
An atomic formula is an n-ary predicate symbol An followed by an n-tuple of individual 

symbols (variables or parameters), thus An(α1, …, αn). A formula is anything resulting from 
the following recursive rules: 

F0. Any atomic formula is a formula. 
Fl. If X is a formula, so is ∼X. 
F2, 3, 4. If X and Y are formulas, so are (X ∧ Y), (X ∨ Y), (X → Y). 
F5, 6. If X is a formula and x is a variable, (∀x)X and (∃x)X are formulas. 

Subformulas and the degree of a formula are defined as usual. The property of uniqueness 
of composition of a formula still holds. We note the usual properties of substitution, and we 
use the following notation: If X is a formula and α and β are individual symbols, by X(αβ) 
we mean the result of substituting β for every occurrence of α in X (every free occurrence 
in case α is a variable). We usually denote this informally as follows: we write X as X(α) 
and X(αβ) as X(β). It will be clear from the 46 context what is meant. We again use 
parentheses in an informal manner and we omit superscripts on predicates. 

Although the definition of formula as stated allows unbound occurrences of variables in 
formulas, we shall assume, unless otherwise stated, that all variables in a formula are 
bound. Notation like X(x) however, indicates that x may have free occurrences in X. 

 
§ 2. Models an validity 
 
In this section we define the notion of a first order intuitionistic model, and first order 

intuitionistic validity, referred to respectively as model and validity. This modeling 
structure is due to Kripke and may be found, in different notation, in [13] (see also [18]). 
The notions of ch. 1, if needed, will be referred to as propositional notions to distinguish 
them. 

If P is a map from to sets of parameters, by P (Γ) we mean the set of all formulas which 
may be constructed using only parameters of P(Γ). By a (first order intuitionistic) model 
we mean an ordered quadruple <G, R, |=, P >, where G is a non-empty set, R is a 
transitive, reflexive relation on G, |= is a relation between elements of G and formulas, and 
P is a map from G to non-empty sets of parameters, satisfying the following conditions: 

for any Γ ∈ G 



Q0. P(Γ ) ⊆ P(Γ *), 
Ql. Γ |= A ⇒ A ∈ P(Γ ) for A atomic, 
Q2. Γ |= A ⇒ Γ |= A for A atomic, 
Q3. Γ |= (X ∧ Y) ⇔ Γ |= X and Γ |= Y, 
Q4. Γ |= (X ∨ Y) ⇔ (X ∨ Y) ∈ P (Γ ) and Γ |= X or Γ |= Y, 
Q5. Γ |= ∼X ⇔ ∼X ∈ P(Γ ) and for all Γ*, Γ * =| X, 
Q6. Γ |= (X → Y)  ⇔ (X → Y) ∈ P(Γ ) and for all Γ *, if Γ* |= X, then Γ* |= Y, 
Q7. Γ |= (∃x)X(x) for some a ∈ P(Γ ) Γ |= X(a), 
Q8. Γ |= (∀x)X(x) for every Γ * and for every a ∈ P(Γ *) Γ* |= X(a). 
We call a particular formula X valid in the model <G, R, |=, P > if for all Γ ∈ G such 

that X ∈ P(Γ ) Γ |= X. X is called valid if X is valid in all models. 
 
§ 3. Motivation 
 
The intuitive interpretation given in ch. 1 § 3 for the propositional case may be extended 

to this first order situation. 47  
In one's usual mathematical work, parameters may be introduced as one proceeds, but 

having introduced a parameter, of course it remains introduced. This is what the map P is 
intended to represent. That is, for Γ ∈ G Γ is a state of knowledge, and P(Γ) is the set of all 
parameters introduced to reach Γ . (Or in a stricter intuitive sense, P(Γ ) is the set of all 
mathematical entities constructed by time Γ ). Since parameters, once introduced, do not 
disappear, we have Q0. Q2-6 are as in the propositional case. Q7 should be obvious. Q8 
may be explained: to know (∀x)X(x) at Γ , it is not enough merely to know X(a) for every 
parameter a introduced so far (i.e. for all a ∈ P(Γ )). Rather one must know X(a) for all 
parameters which can ever be introduced (i.e. for all a ∈ P(Γ *) Γ* |= X(a)). 

The restrictions Q1, and in Q4, Q5 and Q6 are simply to the effect that it makes no sense 
to say we know the truth of a formula X if X uses parameters we have not yet introduced. It 
would of course make sense to add corresponding restrictions to Q3, Q7 and Q8, but it is 
not necessary. The original explanation of Kripke may be found in [13]. For a different but 
related model theory in terms of forcing see [5]. 

 
§ 4. Some properties of models 
 
Theorem 4.1: In any model<G, R, |=, P >, for any Γ ∈ G, if Γ |= X, then X ∈ P(Γ). 
Proof: A straightforward induction on the degree of X. 
 
Theorem 4.2: In any model <G, R, |=, P >, for any formula X, if Γ |= X, then Γ* |= X. 
Proof: Also a straightforward induction on the degree of X. 
 
Theorem 4.3: Let G be a non-empty set, R be a transitive reflexive relation on G, and P 

be a map from G to non-empty sets of parameters such that P(Γ ) ⊆ P(Γ*) for all Γ ∈ G. 
Suppose |= is a relation between elements of G and atomic formulas such that Γ |= A ⇒ A 
∈ P  (Γ ). Then Γ |= can be extended in one and only one way to a relation, also denoted by 
|=, between and formulas, such that <G, R, |=, P > is a model. 

Proof: A straightforward extension of the corresponding propositional proof. 



 
Definition 4.4: Let <G, R, |=, P > be a model and suppose a is some 48 parameter such 

that a ∉ ∪Γ∈G
 P(Γ). By <G, R, |=, P >(b

a) we mean the model <G, R, |=’, P > defined as 
follows: 

P’(Γ) is the same as P(Γ) except for containing a in place of b if P(Γ) contains b. 
For A atomic Γ |= A ⇒Γ |=’A(b

a), and |=’ is extended to all formulas. 
 
Lemma 4.5: Let <G, R, |=, P> be a model, a ∉ ∪Γ∈G P(Γ), <G, R, |=’, P’> be <G, R, |=, 

P>(b
a). Then for any formula X not containing a 

 
Γ |= X ⇒Γ |=’ X(b

a). 
 
Proof: By an easy induction on the degree of X. 
 
Definition 4.6: Let <G, R, |=, P > be a model and suppose a is some parameter such that 

a∉ ∪Γ∈G
 P(Γ). By <G, R, |=, P >b=a we mean the model <G, R, |=’, P’ > defined as 

follows: 
P’(Γ) is the same as P(Γ) except for containing a as well as b whenever P(Γ) contains 

b. 
For A atomic Γ |= A ⇒ Γ |=’ A’, where A’ is like A except for containing a at zero or 

more places where A contains b, and |=’ is extended to all formulas. 
 
Lemma 4.7: Let <G, R, |=, P> be a model a ∉ ∪Γ∈G P(Γ), and let <G, R, |=’, P’> be <G, 

R, |=, P>b=a. Then if X is any formula not containing a, and if X’ is like X except for 
containing a at zero or more places where X contains b 

 
Γ |= X ⇒Γ |=’ X’. 

 
Proof: Again an easy induction on the degree of X. 
 
§ 5. Examples 
 
We show that two theorems of classical logic are not intuitionistically valid: 
 
(1). | C ∼ ∼(∀x)(A(x ) ∨ ∼A(x)), 
 

but the following is an intuitionistic counter-model for it. We take the natural numbers as 
parameters. Let 
 

G = {Γii = 0, 1, 2, ...}, 
ΓiRΓj iff i ≤ j, 

P(Γi) = {l, 2, ..., i, i + 1}49 
 
Γn |= A(i) iff i ≤ n and |= is extended to all formulas. We may give this model schematically 
by 

 



Γ0 [1] 
 

Γ1 [1, 2] |= A(1) 
 

Γ2 [1, 2, 3] |= A(1), A(2) 
 

Γ3 [1, 2, 3, 4 ] |= A(1), A(2), A(3) 
 
… 

 
We claim no Γi |= ∼ ∼(∀x)(A(x) ∨ ∼A(x)). Suppose instead that 
 
 Γi |= ∼ ∼(∀x)(A(x) ∨ ∼A(x)). 
 
Then for some j ≥ i 

 
Γj |= (∀x)(A(x) ∨ ∼A(x)). 

 
But j+1 ∈ P(Γi ), so 
 

Γj |= A(j+1) ∨ ∼A(j+1). 
 
But Γj =| A(j+1) since j+1 > j, and if Γj |= ∼A(j+1), then since ΓjRΓ j+1, Γj+1 =| A(j+1), a 

contradiction. 
 
(2). | C (∀x)(A ∨ B(x)) → (A ∨ (∀x)B(x)), 

 
but an intuitionistic counter-model is the following, where parameters are again integers: 

 
G = {Γ1, Γ2}, 

Γ1RΓ2, Γ1RΓ1, Γ2RΓ2, 
P(Γ1) = {l}, P(Γ2) = {l, 2}, 
Γ1 |= B(1), Γ2 |= B(1), Γ2 |= A, 

 
and |= is extended to all formulas. Schematically, this is 

 
Γ1 [1] |= B(1) 
 

Γ2 [1, 2] |= B(1), A 
 

To show this is a counter-model, first we claim 
 

Γ1 |= (∀x)(A ∨ B(x)). 50  
 

This follows becauseΓ1 |= B(1). Hence 
 

Γ1 |= A ∨ B(1) 



 
and Γ2 |= A, so 

 
Γ2 |= A ∨ B(1) and Γ2 |= A ∨ B(2). 

 
But Γ1 =| A and moreover Γ1 =| (∀x)B(x) since Γ2 =| B(2). Thus Γ1 =| A ∨ (∀x)B(x). 

 
§ 6. Truth and almost-truth sets 
 
In classical first order logic, a set S of formulas is sometimes called a truth set if 
 
 (1). X ∧ Y ∈ S ⇔ X ∈ S and Y ∈ S, 
 (2). X ∨ Y ∈ S ⇔ X ∈ S or Y ∈ S, 
 (3). ∼X ∈ S ⇔ X ∉ S, 
 (4). X → Y ∈ S ⇔ X ∉ S or Y ∈ S, 
 (5). (∃x)X(x) ∈ S ⇔ X(a) ∈ S for some parameter a, 
 (6). (∀x)X(x) ∈ S ⇔ X(a) ∈ S for every parameter a, 

 
where there is some fixed set of parameters, X and Y are formulas involving only these 
parameters, and (5) and (6) refer to this set of parameters. 

We now call S an almost-truth set if it satisfies (l)-(5) above and  
 
(6a). (∀x)X(x) ∈ S ⇒ X(a) ∈ S for every parameter a. 
 
It is one form of the classical completeness theorem that for any pure (i.e. with no 

parameters) formula X, X is a classical theorem if and only if X is in every truth set. 
We leave the reader to show 
 
Theorem 6.1: If X is pure and contains no occurrence of the universal quantifier, X is in 

every truth set if and only if X is in every almost-truth set. 
 
§ 7. Complete sequences 
 
The method used in this section was adapted from forcing techniques, and is due to 

Cohen [3]. 51 
 
Definition 7.1: In the model < G, R, |=, P >, we call C ⊆ R an R-chain if 

 
Γ, Δ ∈ C ⇒ ΓRΔ or ΔRΓ. 

 
If C is an R-chain, by C’ we mean {X  for some Γ ∈ C, Γ |= X}. 
If C is an R-chain, C is called complete if, for every formula X with parameters used in 

C’ , X ∨ ∼X ∈ C’. 
 
Lemma 7.2: Let C be a complete R-chain in the model <G, R, |=, P >. Then C’ is an 

almost-truth set. 

Antonello Sciacchitano
Commento:  



Proof: This is a straightforward verification of the cases. We give case (4) as an 
illustration. 

Suppose (X → Y) ∈ C’. Then for some Γ ∈ C Γ |= X → Y. Now either X ∉ C’ or X ∈ C’. 
If X ∈C’, then for some Δ ∈ C Δ |= X. Let Ω be the R-last of Γ and Δ. Then Ω |= X and Ω 
|= X → Y, so Ω |= Y and Y ∈ C’. Thus X ∉ C’ or Y ∈ C’. 

Conversely suppose (X → Y) ∉ C’. Then ∼X ∉ C’, since C’ is closed under modus 
ponens and contains ∼X → (X → Y) as is easily shown. But X ∨ ∼X ∈ C’, hence X ∈ C’. 
Further Y ∈ C’, since again Y → (X → Y) ∈ C’. 

 
Lemma 7.3: Let <G, R, |=, P > be a model, Γ ∈ G and X ∈ P (Γ). There is some Γ* ∈ 

G such that Γ* |= X ∨ ∼X. 
Proof: Either some Γ* |= X and we are done, or no Γ* |= X in which case Γ |= ∼X and we 

are done. 
 
Theorem 7.4: Let <G, R, |=, P > be a model and Γ ∈ G. Then Γ can be included in 

some complete R-chain C such that C’ is an almost-truth set. 
Proof: There are only countably many formulas, X1, X2, X3, … We define a countable 

R-chain {Γ0, Γ1, Γ02, ...} as follows: 
Let Γ0 be Γ. 
Having defined Γn, if Xn+1 ∉ P(Γ*) for any Γn*, let Γn+1 be Γn. If Xn+1 ∈ P(Γn*) for 

some Γn*, then Γn*, by lemma 7.3, has an R-successor Γn** such that Γn** |= Xn+1 ∨ ∼Xn+1. 
Let Γn+1 be this Γn**. 

Let C be {Γ0, Γ1, Γ2, ...}. Clearly C is complete, and by lemma 7.2 C’ is an almost-truth 
set. 

 
§ 8. A connection with classical logic 
 
The first theorem of this section is essentially theorem 59(b) of [10 p. 492], but there it is 

proved prooftheoretically and here semantically. 52 
 
Theorem 8.1: Let X be a pure formula. If X is in every classical almost-truth set, ∼∼X is 

intuitionistically valid. 
Proof: Suppose ∼ ∼X is not valid. Then there is a model < G, R, |=, P > and a Γ ∈G 

such that Γ =| ∼ ∼X. Then for some Γ* ∈ G Γ* |= ∼X. Now Γ * can, by theorem 7.4, be 
included in an R-chain C such that C’ is an almost-truth set. But ∼X ∈ C’, so that X ∉C’. 

 
Theorem 8.2: If X is intuitionistically valid, then X is classically valid (for X pure). 
Proof: As before, if X is not classically valid, there is a truth set S not containing X. But 

it is easily shown that if G = {S}, SRS, S |= Y if Y ∈ S, and P (S) is the set of all 
parameters occurring in S, the resulting < G, R, |=, P > is a model in which X is not valid. 

 
Theorem 8.3: If X is a pure formula with no occurrence of the universal quantifier, then 

X is classically valid if and only if ∼ ∼X is intuitionistically valid. 
Proof: 

 



∼ ∼X intuitionistically valid ⇒ ∼ ∼ X classically valid 
⇒ X classically valid. 

 
Conversely 

 
X classically valid ⇒ X is in every truth set 

⇒ X is in every almost-truth set 
⇒ ∼ ∼X is intuitionistically valid. 

 
Remark 8.4: This result [due to Kolmogorov, 1925] will be of fundamental importance 

in part II. 
 
Corollary 8.5: First order intuitionist logic is undecidable. 
Proof: Classical first order logic is undecidable, and every classical formula is 

classically equivalent to a formula with no universal quantifiers. 
 
Remark 8.6: That theorem 8.3 cannot be extended to all formulas is shown by example 

(1) in § 5. 53  



 
CHAPTER 5 

 
FIRST ORDER INTUITIONISTIC LOGIC 
 
PROOF THEORY 
 
§ 1. Beth tableaus 
 
The following is an extension of the system of ch. 2 § 1 to the first order case (see 

[2]). Everything is as it was there, except that four reduction rules are added to the list. 
These are 

 
 S, T(∃x)X(x)  S, F∃(x)X(x) 

T∃: –––––––––– F
∃: 

––––––––––– 

 S, TX(a) provided a is new  S, FX(a) 
    
 S, T(∀x)X(a)  S, F(∀x)X(a) 

T∀:  ––––––––––– F
∀
: 

––––––––––– 

 S, TX(a)  ST, FX(a) provided a is new 
 
(Note the ST in rule F∀.) In rules F∃ and T∀, a may be any parameter whatsoever. In 
rules T∃ and F∀, the parameter a introduced must not occur in any formula of S or in 
the formula X(x). 

The corresponding classical tableau system is like the above, but in rule F∀ ST is 
replaced by S. As in ch. 2 § 1 interpretations differ. Classically the interpretation is as it 
was in the propositional case. The restrictions on parameters in T∃ and F∀ are for 
obvious reasons. In the intuitionistic system the difference between T ∃ and F∀ may be 
explained 54 as follows. Suppose we have proved (∃x)X(x). Since (intuitionistically) the 
only existence proofs are constructive, there must already be an instance X(a) which we 
have proved. Thus rule T∃. But suppose we have not proved (∀x)X(x). We might have 
proved all instances so far encountered, but it must be possible (i.e. compatible with our 
present knowledge) that we will at some time encounter an instance for which we will 
have no proof. However, this might happen at some time in the future, by which time 
we may have proved some things we do not know (some FZ ∈ S might become TZ). 
Hence the restriction to ST in rule F∀. 

As in the propositional case, we proceed to show correctness and completeness (in 
two ways) of this system. 

The following two examples illustrate proofs in the system: 
 
 (1). | I (∀x)X(x) → ∼ (∃x) ∼X(x). 
 
The proof is 
 
 {{F(∀x)X(x) → ∼ (∃x) ∼X(x)}}, 
 {{ T(∀x)X(x), F∼ (∃x) ∼X(x) }}, 
 {{ T(∀x)X(x), T(∃x) ∼X(x)}}, 
 {{ T(∀x)X(x), T∼X(a)}}, 



 {{ TX(a), T∼X(a)}}, 
 {{ TX(a), FX(a)}}. 
 
(2). | I ∼ (∃x) ∼ [X(x) → Y(x)] → (∀x)[∼ Y(x) → ∼ X(x)]. 
 
The proof is 
 
{{F∼ (∃x) ∼ [X(x) → Y(x)] → (∀x)[∼ Y(x) → ∼ X(x)]}}, 
{{T∼ (∃x) ∼ [X(x) → Y(x)], F(∀x)[∼ Y(x) → ∼ X(x)]}}, 
{{T∼ (∃x) ∼ [X(x) → Y(x)], F[∼ Y(a) → ∼ X(a)]}}, 
{{T∼ (∃x) ∼ [X(x) → Y(x)], T∼ Y(a), F∼ X(a)]}}, 
{{T∼ (∃x) ∼ [X(x) → Y(x)], T∼ Y(a), TX(a)]}}, 
{{F(∃x) ∼ [X(x) → Y(x)], T∼ Y(a), TX(a)]}}, 
{{F ∼ [X(a) → Y(a)], T∼ Y(a), TX(a)]}}, 
{{T[X(a) → Y(a)], T∼ Y(a), TX(a)]}}, 
{{FX(a), T∼ Y(a), TX(a)]}}, {{TY(a), T∼ Y(a), TX(a)]}}, 
{{FX(a), T∼ Y(a), TX(a)]}}, {{TY(a), FY(a), TX(a)]}}, 
 
§ 2. Correctness of Beth tableaus 
 
Definition 2.1: Let S = {TX1, ... , TXn, FY1, ... , FYm} be a set of signed 55 formulas, 

<G, R, |=, P> a model, and Γ ∈ G. We say Γ realizes S if Xi ∈ P(Γ), Yi ∈ P(Γ), and Γ 
|= Xi, Γ =| Yj (i = l, ..., n, j = 1, ..., m). A set S is realizable if something realizes it. 

A configuration C is realizable if one of its elements is realizable. 
 
Lemma 2.2: Let Q stand for either the sign T or the sign F. If S, QX(b) is realizable 

and if a is a parameter which does not occur in S or in X (so a ≠ b) then S, QX(a) is 
realizable. 

Proof: Suppose in the model <G, R, |=, P> Γ realizes S, QX(b). Choose a new 
parameter c ∉ ∪Γ∈G

 P(Γ) (we can always construct a new parameter). Let <G, R, |=’, 
P’> be <G, R, |=, P>(a

c) (see ch. 4 § 4). Since a does not occur in S or X, by lemma 
4.4.5, in this new model Γ realizes S, QX(b). But now a ∉ ∪Γ∈G

 P’(Γ), so we may 
define a third model <G, R, |=”, P”> as <G, R, |=’, P’>b=a. By lemma 4.4.7 in this 
third model Γ realizes S, QX(a). 

 
Lemma 2.3: If S, T(∃x)X(x) is realizable, and if a does not occur in S or X(x), then S, 

TX(a) is realizable. 
Proof: Suppose in the model <G, R, |=, P> Γ realizes S, T(∃x)X(x). Then Γ |= 

(∃x)X(x), so for some b ∈ P(Γ) Γ |= X(b). Thus Γ realizes S, TX(b). If a = b we are 
done. If not, by lemma 2.2 we are done. 

 
Lemma 2.4: If S, F(∃x)X(x) is realizable and if a is any parameter, S, FX(a) is 

realizable. 
Proof: Suppose in the model <G, R, |=, P> Γ realizes S, F(∃x)X(x). Then Γ =| 

(∃x)X(x). If a ∈ P(Γ ), Γ =| X(a) and we are done. If a ∉ P(Γ ), a cannot occur in S or 
X by the definition of realizability. But P(Γ ) ≠ ∅, so there is a b ∈ P(Γ ) with b ≠ a 
and Γ =| X(b). Thus S, FX(b) is realizable. Now use lemma 2.2. 

 



Lemma 2.5: If S, T(∀x)X(x) is realizable and if a is any parameter, S, TX(a) is 
realizable. 

Proof: Similar to that of lemma 2.4. 
 
Lemma 2.6: If S, F(∀x)X(x) is realizable and if a is any parameter which does not 

occur in S or X(x), then ST, FX(a) is realizable. 
Proof: Suppose in the model <G, R, |=, P> Γ realizes S, F(∀x)X(x). Then Γ =| 

(∀x)X(x). But X(x) ∈ P(Γ), so there is a Γ* such that Γ* =| X(b) for some b ∈ P(Γ*). Of 
course Γ* realizes ST. If b = a we are done. If not, since ST, X(b) is realizable, by lemma 
2.2 we are done. 56 
 

Theorem 2.7: Let C1, C2, … , Cn be a tableau. If Ci is realizable, so is Ci+1. 
Proof: We pass from Ci to Ci+1 by the application of some reduction rule. All the 

propositional rules were dealt with in ch. 2. The four new (first order) rules are handled 
by lemmas 2.3-2.6. 

 
Corollary 2.8: If X is provable, X is valid. 
Proof: Exactly as in the propositional situation. 
 
§ 3. Hintikka collections 
 
This section generalizes the definitions of ch. 2 § 3 to the first order setting. Recall 

that a finite set of signed formulas is consistent if no tableau for it is closed. We say an 
infinite set is consistent if every finite subset is. 

Let G be a collection of sets of signed formulas. If Γ ∈ G, by P(Γ) we mean the 
collection of all parameters occurring in formulas in Γ. If Γ, Δ ∈ G, by ΓRΔ we mean 
P (Γ) ⊆ P (Δ) and ΓT ⊆ Δ. 

 
Definition 3.1: We call G a (first order) Hintikka collection if, for any Γ ∈ G Γ is 

consistent and 
TX ∧ Y ∈ Γ ⇒ TX ∈ Γ and TY ∈ Γ, 
FX ∨ Y ∈ Γ ⇒ FX ∈ Γ and FY ∈ Γ, 
TX ∨ Y ∈ Γ ⇒ TX ∈ Γ or TY ∈ Γ, 
FX ∧ Y ∈ Γ ⇒ FX ∈ Γ or FY ∈ Γ, 

T∼X ∈ Γ ⇒ FX ∈ Γ 
TX → Y ∈ Γ ⇒ FX ∈ Γ or TY ∈ Γ, 

F∼X ∈ Γ ⇒ for some Δ ∈ G, ΓRΔ, TX ∈ Δ, 
FX →Y ∈ Γ ⇒ for some Δ ∈ G, ΓRΔ, TX ∈ Δ, FY ∈ Δ, 

T(∀x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for all a ∈ P(Γ), 
F(∃x)X(x) ∈ Γ ⇒ FX(a) ∈ Γ for all a ∈ P(Γ), 
T(∃x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for all a ∈ P(Γ), 
F(∀x)X(x) ∈ Γ ⇒ for some Δ ∈ G ΓRΔ and 

for some a ∈ P(Δ) TX(a) ∈ Δ. 
 
Definition 3.2: If G is a Hintikka collection, we call <G, R, |=, P > a model for G if 
 
(1). <G, R, |=, P > is a model, 57  
(2). P and R are as above, 



(3). for all Γ ∈ G TX ∈ Γ ⇒ Γ |= X and FX ∈ Γ ⇒ Γ =| X. 
 
Theorem 3.3: There is a model for any Hintikka collection. 
 Proof: Suppose we have a Hintikka collection G, P and R are as defined above. If 

A is atomic, let Γ |= A if TA ∈ Γ, and extend to all formulas. The result <G, R, |=, P > 
is a model. We claim it is a model for G. We show property (3) by induction on the 
degree of X. 

The propositional cases were done in ch. 2 § 3. Of the four new cases we only do two 
as an illustration. 

Suppose the result known for all subformulas of the formula in question. Then 
 
T(∀x)X(x) ∈ Γ ⇒ (∀Δ ∈ G)(ΓRΔ ⇒ T(∀x)X(x) ∈ Δ) 

(since ΓT ⊆Δ if ΓRΔ) 
⇒ (∀Δ ∈ G)(ΓRΔ ⇒ ((∀a ∈ P(Δ))TX(a) ∈ Δ)) 
⇒ (∀Δ ∈ G)(ΓRΔ ⇒ ((∀a ∈ P(Δ)) Δ |= X(a))) 
⇒ Γ |= (∀x) X (x). 

Conversely 
 
F(∀x)X(x) ∈ Γ ⇒ (∃Δ ∈ G)(ΓRΔ and (∃a ∈ P(Δ))(FX(a) ∈ Δ)) 

⇒ (∃Δ ∈ G)(ΓRΔ and (∃a ∈ P(Δ))(Δ =| X(a))) 
⇒ Γ |= (∀x) X (x). 

 
 
Thus, as in the propositional case, to establish the completeness of Beth tableaus we 

need only show that if X is not provable, there is a Hintikka collection and a Γ ∈ G such 
that FX ∈ Γ. 

 
§ 4. Hintikka elements 
 
Definition 4.1: Let Γ be a set of signed formulas and P a set of parameters. We call Γ 

a Hintikka element with respect to P if Γ is consistent and 
TX ∧ Y ∈ Γ ⇒ TX ∈ Γ and TY ∈ Γ, 
FX ∨ Y ∈ Γ ⇒ FX ∈ Γ and FY ∈ Γ, 
TX ∨ Y ∈ Γ ⇒ TX ∈ Γ or TY ∈ Γ, 
FX ∧ Y ∈ Γ ⇒ FX ∈ Γ or FY ∈ Γ, 
T ∼ X ∈ Γ ⇒ FX ∈ Γ, 
TX → Y ∈ Γ ⇒ FX ∈ Γ or TY ∈ Γ, 58  
T(∀x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for each a ∈ P, 
F(∃x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for each a ∈ P, 
T(∃x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for some a ∈ P, 
 
Theorem 4.2: Let Γ be an at most countable, consistent set of signed formulas. Let S 

be the set of all parameters occurring in formulas in Γ. Let a1, a2, a3, ... be a countable 
list of parameters not in S. Let P = S ∪ {a1, a2, a3, ...}. Then Γ can be extended to a 
Hintikka element with respect to P. 

Proof: Order the (countable) set of all subformulas of formulas in Γ, using only 
parameters of P: X1, X2, X3, ... We define a (double) sequence of sets of signed 
formulas: 



Let Γ0 = Γ. Suppose we have defined Γn which is a consistent extension of Γ0, using 
only finitely many of a1, a2, a3, ... Let Δn

1 = Γn. We define Δn
2, … , Δn

n+1 and let Γn+1 = 
Δn

n+1 We do this as follows: 
Suppose we have defined Δn

k for some k (1≤k≤n). Consider the formula Xk. At most 
one of TXk, FXk can be in Δn

k (since it is consistent). If neither is, let Δn
k+1 = Δn

k. If one 
is in Δn

k, we have several cases. 
Case (la). Xk is Y ∨ Z and TXk ∈Δn

k. Then one of Δn
k, TY or Δn

k, TZ is consistent. Let 
Δn

k+1 be Δn
k, TY if consistent, and Δn

k, TZ otherwise. 
Case (1 b). Xk is Y ∨ Z and FXk ∈ Δn

k. Then Δn
k, FY, FZ is consistent. Let this be 

Δn
k+1. 
The cases 
(2a). TX ∧ Y, 
(2b). FX ∧ Y, 
(3). T ∼ X, 
(4). TX → Y, 

are all treated in a similar manner. 
Case (5a). Xk is (∃x)X(x) and TXk ∈ Δn

k. Since Δn
k uses only finitely many of a1, a2, 

a3, ..., let ai be the first one unused. Let Δn
k+1 be Δn

k, TX(a). Since a is new, this must 
also be consistent. 

Case (5b). Xk is (∃x)X(x) and FXk ∈ Δn
k. Let Δn

k+1 be Δn
k together with FX(a) for each 

α ∈ S, and each α = ai which has been used so far. Then Δn
k+1 is again consistent. 

Case (6). T(∀x)X(x), is treated as we did case (5b). 
Case (7). If the signed formula does not come under one of the above cases let Δn

k+1 

= Δn
k. 59 

Thus we have defined a sequence Γ0, Γ1, Γ2, … , Let Π = ∪Γn. We claim Π is a 
Hintikka collection with respect to P. The verification of the properties is 
straightforward. 

 
§ 5. Completeness of Beth tableaus 
 
Supposing X to be not provable, we give a procedure for constructing a sequence of 

Hintikka elements. 
First we order our countable collection of parameters as follows: 

 
S1: a1

1, a2
1, a3

1, … 
S2: a1

2, a2
2, a3

2, … 
S3: a1

3, a2
3, a3

3, … 
… … … … … 

 
where we have placed all the parameters of X in S1, and let Pn = S1 ∪ S2 ∪ … ∪ Sn. 

For this section only, by an F-formula we mean a signed formula of the form F∼X, 
FX →Y or F(∀x)X. We may assume once and for all an ordering of all formulas. Now 
we proceed: 

Step (0). X is not provable, so {FX} is consistent. Extend it to a Hintikka element 
with respect to P1. Call the result Γ1. 

Step (1). Take the first F-formula of Γ1. If this is F∼X, consider Γ1T, TX. This is 
consistent. Extend it to a Hintikka element with respect to P2, call it Γ2. If the first 
F-formula is FX → Y, extend Γ1T, TX, FY to a Hintikka element with respect to P2, Γ2. If 
the first F-formula is F(∀x)X(x), extend Γ1T, FX(a1

2) to a Hintikka element with respect 



to P2, Γ2. In any event Γ2 is a consistent Hintikka element with respect to P2. Now call 
the first F-element of Γ1 “used”. The result of step (1) is {Γ1, Γ2}. 

Suppose at the end of step (n) we have the sequence {Γ1, Γ2, Γ3, ..., Γ2n} where each 
Γi is a Hintikka element with respect to Pi. 

Step (n+1). Take the first “unused” F-formula of Γ1, proceed as in step (1) depending 
on whether the formula is F∼X, FX → Y or F(∀x)X. Produce from Γ1T, TX or Γ1T, TX, FY 
or Γ1T, FX(a1

2n+1) a Hintikka element with respect to P2n+1, call it Γ2n+1, and call the 
formula in question “used”. Repeat the same procedure with the first “unused” 
F-formula of Γ2, producing a Hintikka element with respect to P2n+2, 60 call it Γ2n+2 
Continue toΓ2n, producing a Hintikka element with respect to P2n+1, call it Γ2n+1. The 
result of the (n+l)st step is thus 

 
{Γ1, Γ2, … Γ2n+1}. 

 
Let be G the collection of all Γn generated in the above process. We claim G is a 

Hintikka collection. 
Each Γn ∈ G is a Hintikka element with respect to Pn, so P(Γn) is Pn. Since Γn is a 

Hintikka element with respect to P(Γn), to show G is a Hintikka collection we have 
only three properties to show. 

Suppose for some Γn ∈ G, F(∀x)X(x) ∈ Γn. By the above construction there must be 
some Γk ∈ G such that ΓnT ⊆ Γk, P(Γn) ⊆ P(Γk) and FX(a) ∈ Γk for some parameter a. 
Thus (∃Γk ∈ G)ΓnRΓk and FX(a) ∈ Γk for some a ∈P(Γk). 

The cases F∼ and F→ are similar. 
Thus G is a Hintikka collection and FX ∈ Γ1 ∈ G, so our completeness theorem is 

established. We note that in the Hintikka collection resulting, every formula is a 
subformula of X. We remark also that the construction of § 4 and of this section could 
be combined into a single sequence of steps. 

This proof is a modification of the original proof of Kripke [13]. 
 
§ 6. Second completeness proof for Beth tableaus 
 
The following is a Henkin type proof and serves as a transition to the completeness 

of the axiom system presented in the next few sections. A proof along the same lines but 
using unsigned formulas was discovered independently by Thomason [21] and by Aczel 
[1]. The similarity to the algebraic work of ch. 1 § 6 is also noted. 

Recall that a finite set of signed formulas Γ is consistent if no tableau for it is closed. 
An infinite set is consistent if every finite subset is. 

 
Definition 6.1.: Let P be a set of parameters and Γa set of signed formulas. We call Γ 

maximal consistent with respect to P if 
 
(1). every sìgned formula in Γ uses only parameters of P, 
(2). Γ is consistent, 
(3). for every formula X with all its parameters from Γ, either TX ∈ Γ or FX ∈ Γ or 

both Γ, TX and Γ, FX are inconsistent. 61 
 
Lemma 6.2: Let Γ be a consistent set of signed formulas, and P be a non-empty set 

of parameters containing at least every parameter used in Γ. Then Γ can be extended to 
a set Δ which is maximal consistent with respect to P. 



Proof: P is countable, so we may enumerate all formulas with parameters from Γ: X1, 
X2, X3, … 

Let Δ0 = Γ. Having defined Δn, consider Xn+1. If Δn, TXn+1 is consistent, let it be Δn+1. 
If not, but if Δn, FXn+1 is consistent, let it be Δn+1. If neither holds, let Δn+1 be Δn. 

Let Δ = ∪Δn. The conclusion of the lemma is now obvious. 
 
Definition 6.3: Let Γ be a set of signed formulas and P a set of parameters. We call Γ 

good with respect to P if 
 
(1). Γ is maximal consistent with respect to P, 
(2). T(∃x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for some a ∈ P. 
 
Lemma 6.4: Let Γ be a consistent set of signed formulas, and S be the set of 

parameters occurring in Γ. Let {a1, a2, a3, ... } be a countable set of distinct parameters 
not in S, and let P = S ∪ {al, a2, a3, ... }. Then Γ can be extended to a set Δ which is 
good with respect to P. 

Proof: P is countable, order the set of formulas with parameters from P: X1, X2, X3, 
… We proceed as follows: 

(1). Let Δ0 = Γ. 
(2). Extend Δ0 to a set Δ1 maximal consistent with respect to S. 
(3). Take the first Xi (in the above ordering) of the form T(∃x)X(x) such that 

T(∃x)X(x) ∈ Δ1 but for no α ∈ S is TX(α) ∈ Δ1. Let Δ2 = Δ1, TX(a1). Since a1 is “new”, 
Δ2 is consistent. 

(4). Extend Δ2 to a set Δ3 maximal consistent with respect to S ∪{a1}. 
(5). Take the first Xi of the form T(∃x)X(x) such that T(∃x)X(x) ∈ Δ3 but for no α ∈ S 

∪ {al} is TX(α) ∈ Δ3. Let Δ4 = Δ3, TX(a2). Again Δ4 is consistent. 
(6). Extend Δ4 to a set Δ5 maximal consistent with respect to S ∪ {a1, a2} 
And so on. 
Let Δ = ∪Δn. We claim Δ is good with respect to P. 
First Δ is consistent since each Δn is consistent. 
If X has all its parameters in P, then for some n all the parameters of X are in S ∪ 

{a1, a2, ..., an}. But in step (2n) we extend Δ2n. to Δ2n+1, a set maximal consistent with 
respect to S {a1, a2, ..., an}. Thus TX or 62 FX is in Δ2n+1 and hence in Δ, or neither can 
be added consistently. Thus Δ is maximal consistent with respect to P. 

Finally suppose T(∃x)X(x) ∈ Δ. We note that the formula dealt with in step (5) is 
different from the one dealt with in step (3), and the one dealt with in step (7) is 
different again. Thus we must eventually reach T(∃x)X(x), and so for some α ∈ P TX(α) 
∈ Δ. Hence Δ is good with respect to P. 

 
Now let us order our countably many parameters as follows: 

 
S1: a1

1, a2
1, a3

1, … 
S2: a1

2, a2
2, a3

2, … 
S3: a1

3, a2
3, a3

3, … 
… … … … … … 

 
and let Pn = S1 ∪ S2 ∪ … ∪ Sn. Let G be the collection of all sets of signed formulas 
which are good with respect to some P. We claim G is a Hintikka collection. 

Suppose Γ ∈ G. Then Γ is good with respect to some Pi, say Pn. Then P(Γ) (the 
collection of all parameters of Γ ) is Pn. 



Suppose TX ∧ Y ∈ Γ but TX ∉ Γ. If Γ, TX ∧ Y is consistent, so is Γ, TX ∧ Y, TX, and 
so Γ is not maximal. Thus TX ∈ Γ. Similarly TY ∈ Γ. Hence 

 
TX ∧ Y ∈ Γ ⇒ TX ∈ Γ and TY ∈ Γ. 

 
Similarly we may show 

 
FX ∨ Y ∈ Γ ⇒ FX ∈ Γ and FY ∈ Γ, 
TX ∨ Y ∈ Γ ⇒ TX ∈ Γ or TY ∈ Γ, 
FX ∧ Y ∈ Γ ⇒ FX ∈ Γ or FY ∈ Γ, 
T ∼ X ∈ Γ ⇒ FX ∈ Γ, 
TX → Y ∈ Γ ⇒ FX ∈ Γ or TY ∈ Γ, 
T(∀x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for every a ∈ P(Γ), 
F(∃x)X(x) ∈ Γ ⇒ FX(a) ∈ Γ for every a ∈ P(Γ). 
 

Moreover 
 
T(∃x)X(x) ∈ Γ ⇒ TX(a) ∈ Γ for some a ∈ P(Γ), 
 

since Γ is good with respect to Pn. 63 
Suppose F∼X ∈ Γ. Since Γ is consistent, ΓT, TX is consistent. Extend it to a set Δ 

which is good with respect to Pn+1 Then P(Γ) ⊆P(Δ) and ΓT ⊆ Δ, so ΓRΔ and TX ∈ Γ. 
Similarly, if FX →Y ∈ Γ, there is a Δ ∈ G e such that ΓRΔ, TX ∈ Δ and FY ∈Δ. 
Finally, if F(∀x)X(x) ∈ Γ, since a1

n+1 does not occur in Γ, ΓT, FX(a1
n+1) is consistent. 

Extend it to a set Δ which is good with respect to Pn+1. Again ΓRΔ and FX(a1
n+1) ∈ Δ 

for a1
n+1 ∈ P(Δ), 

Thus G is a Hintikka collection. 
To complete the proof, suppose X is not provable. Then {FX} is consistent. Since it 

has only finitely many parameters, they must all lie in some Pn. Extend {FX} to a set Γ 
good with respect to Pn. Then Γ ∈ G and FX ∈ Γ. This establishes completeness. 

 
Remark 6.5: The model resulting from this Hintikka collection is a "universal" model 

in that it is a counter-model for every non-theorem. This is not the case for the model of 
§ 5. 

 
We will show later that, in a sense, this Hintikka collection is the analog of a 

classical truth set. 
 
§ 7. An axiom system, A1 
 
The following system was chosen to give a fairly quick completeness proof. It is very 

close to the system of [10] p. 82. 
 
Axiom schemas: 
 
1. X → (Y →X), 
2. (X → Y) → ((X → (Y → Z)) → (X → Z)), 
3. ((X → Z) ∧ (Y → Z)) → ((X ∨Y) → Z), 
4. (X ∧ Y) → X, 



5. (X ∧ Y) → Y, 
6. X → (Y → (X ∧ Y)), 
7. X → (X ∨ Y), 
8. Y → (X ∨ Y), 
9. (X ∧ ∼X) → Y, 
10. (X → ∼X) → ∼X, 
11. X(a) → (∃x)X(x), 
12. (∀x)X(x) → X(a). 64 
 
Rules: 
 
13. X(a) → Y 
 
(∃x)X(x) → Y, 

 
14. Y → X(a) 
 
Y → (∀x)X(x), 

 
15. X, X → Y 

 
Y. 
 

In rules 13 and 14 the parameter a must not occur in Y. In a deduction from premises 
the parameter a must not occur in the premises either. We use the usual notation, if X 
can be deduced from a finite subset of S, we write S | X. We use | X for ∅ | X. In 
the next three sections we establish the correctness and completeness of A1. We 
introduce a second system A2, equivalent to A1, to aid in showing correctness. For use 
in showing completeness we need the following three lemmas: 

 
Lemma 7.1: The deduction theorem holds for A1. 
Proof: The standard one (e.g. [10] §§ 21, 22). 
 
Lemma 7.2: | (W ∧ Y) → X, | (W ∧ Z) → X, | W → (Y ∨ Z) 

 
| W → X. 

 Proof: 
 (1). (W ∧ Y) → X  by hypothesis, theorem, 
 (2). (W ∧ Z) → X  by hypothesis, theorem, 
 (3). W → (Y ∨ Z)  by hypothesis, theorem, 
 (4). W  premise, 
 (5). Y ∨ Z  by (3), (4), rule 15, 
 (6). W → (Y → (W ∧ Y))  axiom 6, 
 (7). Y → (W ∧ Y)  by (4), (6), rule 15, 
 (8). W → (Z → (W ∧ Z))  axiom 6, 
 (9). Z → (W ∧ Z)  by (4), (8), rule 15, 
 (10). Y → X  via (1), (7), 
 (1l). Z → X  via (2), (9), 
(12). (Y ∨ Z) → X via (10, (11), axiom 3, 
(13). X by (5), (12), rule 15, 



(14). W → X deduction theorem cancelling premise (4). 65 
 
Lemma 7.3: If a does not occur in W, Y(x) or X, 
 
| (W ∧ Y(a)) → X, | W → (∃x)Y(x) 
 
| W → X. 
 
Proof: 
(1). (W ∧ Y(a)) → X   by hypothesis, theorems, 
(2). W → (∃x)Y(x) by hypothesis, theorems, 
(3). W premise, 
(4). (∃x)Y(x) by (2), (3), rule 15, 
(5). W → (Y(a)→(W ∧ Y(a))) axiom 6, 
(6). Y(a) → (W ∧ Y(a)) by (3), (5), rule 15, 
(7). Y(a) → X via (1), (6), 
(8). (∃x)Y(x) → X by (7), rule 13, 
(9). X by (4), (8), rule 15, 
(10). W → X deduction theorem cancelling premise (3). 
 
§ 8. A second axiom system, A2 
 
We introduce a second, very similar, axiom system, and prove equivalence. 
A2 has the same axioms as A1, as well as rules 13 and 14. It does not 
have rule 15. Instead it has rules 
 
14a. X(a) 

 
(∀x)X(x) 

 
15a. (∀xl) ... (∀xn)X, (∃x1) ... (∃xn)X → Y 

 
Y 

 
provided all parameters of (∀xl) ... (∀xn)X are also in Y (n may be 0). 

To show the two systems are equivalent, it suffices to show 14a and 
15a are derived rules of A1, and 15 is a derived rule of A2. 

To show 14a is a derived rule of A1, suppose in A1 we have X(a). 
Let T be any theorem of A1 with no parameters. By axiom 1, X(a) → (T → X(a)), so 

by rule 15, T → X(a). Since a is not in T, by rule 14, T(∀x)X(x). But also T, so by rule 
15, (∀x)X(x). 

To show 15a is a derived rule of A1, suppose in A1 we have (∀x1) ... (∀xn)X(x1, … , 
xn) and (∃x1) ... (∃xn)X(x1, ..., xn) → Y, and all 66 parameters of (∀x1) ... (∀xn)X(x1, … , 
xn) are in Y. From (∀x1) ... (∀xn)X(x1, … , xn), by axiom 12, X(a1, ... , an). From axiom 
11, X(a1, ... , an) → (∃x1) ... (∃xn)X(x1, ..., xn), so by rule 15, (∃x1) ... (∃xn)X(x1, ..., xn) 
and by rule 15 again, Y. 

Finally to show rule 15 is a derived rule of A2, suppose we have X and X → Y in A2. 
Let a1, a2, ..., an be those parameters of X not in Y. Since we have X(a1, ..., an), by rule 
14a, (∀x1) ... (∀xn)X(x1, … , xn). Similarly, since X(a1, ..., an) → Y and a1, ..., an do not 
occur in Y, by rule 13, (∃x1) ... (∃xn)X(x1, ..., xn) → Y. Now by rule 16a, Y. 



Thus A1 and dA2 are equivalent. For use in the next section we state the 
straightforward 

 
Lemma 8.1: If in A2 we can prove X(a), there is a proof of the same length of X(b) 

for any parameter b. (note: a does not occur in X(b) = X(a)(a
b)). 

 
9. Correctness of the system A2 
 
Theorem 9.1: If X is provable in A2, X is valid. 
Proof: By induction on the length of the proof for X. If the proof is of length 1, X is 

an axiom and we leave the reader to show validity of the axioms. 
Suppose the result is known for all formulas with proofs of length less than n steps, 

and X is provable in n steps. We investigate the steps involved in the proof of X. 
Axioms have been treated. 

Suppose X(a) → Y in rule 13 is provable in less than n steps where a is not in Y. Then 
X(a) → Y is valid. Then (∃x)X(x) → Y is provable. We wish to show it is valid. Take 
any model <G, R, |=, P> and any Γ ∈ G and suppose ((∃x)X(x) → Y) ∈ P(Γ). Suppose 
Γ* |= (∃x)X(x). Then Γ * |= X(b) for some b. But X(a) →Y is provable, so by lemma 8.1 
(X(a) → Y)(a

b) is provable with a proof of the same length, hence by hypothesis, valid. 
Since a is not in Y, this is X(b) → Y. By validity, Γ* |= X(b) → Y, hence Γ* |= Y. Thus Γ 
|= (∃x)X(x) → Y. 

Rules 14 and 14a are similar. 
Rule l5a: Suppose (∀x1)... (∀xn)X and (∃x1)... (∃xn)X → Y are both provable and 

valid. Then Y is provable. We wish to show Y is valid. Let <G, R, |=, P > be any model 
and Γ ∈ G. Suppose Y ∈ P (Γ). Then 67 (∀x1) ... (∀xn)X and (∃x1) ... (∃xn)X → Y are 
both in P(Γ), and since they are valid, Γ |= (∀x1) ... (∀xn)X and Γ |= (∃x1) ... (∃xn)X → 
Y. By the latter, either Γ =| (∃x1) ... (∃xn)X or Γ |= Y. If Γ =| (∃x1) ... (∃xn)X, for any al, 
…, an ∈ P(Γ), Γ =| X(a1, …, an) contradicting Γ |= (∀x1)... (∀xn)X. Hence Γ |= Y. 
 

§ 10. Completeness of the system A1 
 
The following Henkin type proof was discovered independently by Thomason [21], 

Aczel [1], and the author. 
We work in the system A1. Let Γ be a set of unsigned formulas and P a collection of 

parameters. Suppose all the parameters of Γ are among those in P. 
 
Definition 10.1: By the deductive completion of Γ with respect to P we mean the 

smallest set of formulas Δ involving only parameters of P such that for any X over P 
 

Γ | X ⇒ X ∈ Δ. 
 
We call Γ deductively complete with respect to P if it is its own deductive completion 

with respect to P. 
We say Γ has the Or-property if 
 

X ∨ Y ∈ Γ ⇒ X ∈ Γ or Y ∈ Γ. 
 
We say Γ  has the ∃-property if, for some parameter a, 
 



(∃x)X(x) ∈ Γ ⇒ X(a) ∈ Γ. 
 
We call F nice with respect to P if 
(1). Γ is deductively complete with respect to P, 
(2). Γhas the Or-property, 
(3). Γ  has the ∃-property, 
(4). Γ is consistent. 
 
Remark 10.2: Consistency here has its usual meaning. 
 
Lemma 10.3: Let Γ be a set of formulas and X a single formula. Let P be the set of 

all parameters of Γ or X. Let {a1, a2, a3, …} be a countable 68 collection of distinct 
parameters not in P, and let Q = P ∪ {a1, a2, a3, ... }. If Γ | X, then Γ can be extended 
to a set Δ which is nice with respect to Q such that X ∉ Δ. 

Proof: Let Z1, Z2, Z3, ... be an enumeration of all formulas with parameters from Q of 
the form Y ∨ Z or (∃x)Y(x). 

Since Γ | X, Γ is consistent. We define a sequence {Γn} as follows: 
Let Γ0 be the deductive completion of Γ with respect to P. Then Γ0 is consistent and 

Γ0 | X. Suppose we have defined Γn so that Γn is deductively complete with respect to 
P ∪ {a1, a2, ..., an} and  Γn | X. Let Δn

0 =Γn. 
Suppose we have defined Δn

 j (j < n) so that it is consistent and Δn
j | X. 

Let Δn
 j+1 = Δn

 j if 
(1) Zj ∉ Δn

 j, or 
(2a) Zj ∈ Δn

 j, Zj = Y ∨ Z and Y ∈ Δn
 j or Z ∈ Δn

 j, or 
(2b) Zj ∈ Δn

 j, Zj = (∃x)Y(x) and Y(a) ∈ Δn
 j for some a. 

This leaves the two key cases: 
(3). Suppose Zj ∈ Δn

 j and Zj is Y ∨ Z but Y ∉ Δn
 j, Z ∉ Δn

 j. We claim we can add one 
of Y or Z to Δn

 j so that the result still does not yield X. For otherwise 
 

Δn
 j, Y |  X 

Δn
 j, Z |  X 
Δn

 j  |  Y ∨ Z 
 
(since Y ∨ Z ∈ Δn

 j). But then by lemma 7.2 Δn
 j |  X, a contradiction. So add to Δn

 j one 
of Y or Z so that the result does not yield X. Call the result Δn

 j+1. 
(4). Suppose Zj ∈ Δn

 j and Zj is (∃x)Y(x), but Y(a) ∉ Δn
 j for any a. Take the first 

unused ai of {a1, a2, ... }. We claim we can add Y(ai) to Δn
 j and the result will not yield 

X. This is as above but by lemma 7.3. Thus Δn
 j, Y(ai) |  X. Let Δn

 j+1 be Δn
 j, Y(ai). 

Thus in any case Δn
 j+1 is consistent and X ∉ Δn

 j+1. Let Γn+1 be the deductive 
completion of Δn

n with respect to P ∪ {a1, a2, ..., ak} where ak is the last parameter used 
in Δn

 n. Let Δ = ∪Γn, then Δ has the following properties: 
Δ uses exactly the parameters of Q. 
X ∉Δ since X ∉ Γn for any n. 
Δ is deductively complete with respect to Q. 
Δ has the Or-property. For if Y ∨ Z ∈ Δ, say Y ∨ Z=Zn, then Y ∨ Z ∈ Δm for some m. 

We can take m>n. Then Y ∨ Z = Zn ∈Δm
 n, so either Y or Z is in Δm

 n+1 ⊆ Δ. 
Similarly, Δ has the ∃-property. 69 
 
Lemma 10.4: If Γ is nice with respect to P: 

Antonello Sciacchitano
Commento:  



 
(1). X ∧ Y ∈ Γ ⇔ X ∈ Γ and Y ∈ Γ, 
(2). X ∨ Y ∈ Γ ⇔ X ∈ Γ or Y ∈ Γ, 
(3). ∼X ∈ Γ ⇔ X ∉ Γ, 
(4). X → Y ∈ Γ ⇔ X ∉ Γ or Y ∈ Γ, 
(5). (∃x)X(x) ∈ Γ ⇔ X(a) ∈ Γ for some a ∈ P, 
(6). (∀x)X(x) ∈ Γ ⇒ X(a) ∈ Γ for every a ∈ P. 
 
Proof: (1). By axioms 4, 5 and 6, since Γ is deductively complete with respect to P. 
(2). X ∨ Y ∈ Γ ⇒ X ∈ Γ or Y ∈ Γ, since Γ has the Or-property. The converse holds 

by axioms 7 and 8. 
(3). If ∼X ∈ Γ, X ∉ Γ, since Γ is consistent (using axiom 9). 
(4). If X → Y ∈ Γ, either X ∉ Γ or Y ∈ Γ since Γ is deductively complete with respect 

to P. 
(5). If (∃x)X(x) ∈ Γ, X(a) ∈ Γ for some a ∈ P since Γ has the ∃-property. The 

converse is by axiom 11. 
(6). By axiom 12. 
 
Lemma 10.5: Suppose Γ is nice with respect to P and {a1, a2, a3...} is a set of distinct 

parameters not in P. Let Q = P ∪ {a1, a2, a3 ... }. Then 
(1). If X has all its parameters in P but ∼X ∉ Γ, Γ can be extended to a set Δ nice with 

respect to Q such that X ∈ Δ. 
(2). If X → Y has all its parameters in P but X→ Y ∉ Γ, Γ can be extended to a set Δ 

nice with respect to Q such that X ∈ Δ and Y ∉ Δ. 
(3). If X(x) has all its parameters in P but (∀x)X(x) ∉ Γ, Γ can be extended to a set  Δ 

nice with respect to Q such that for some a ∈ Q, X(a) ∉ Δ. 
Proof: 
(1). Since ∼X ∉ Γ, {Γ, X} is consistent, for otherwise Γ, X | ∼X. So by the 

deduction theorem Γ | X→ ∼X and by axiom 10 Γ | ∼X, so ∼X ∈ Γ. Since {FX} is 
consistent, there is some Y such that Γ, X | Y. Now use lemma 10.3. 

(2). Γ, X | Y for otherwise, by the deduction theorem Γ | X →Y, so X → Y ∈ Γ. 
Since Γ, X | Y, use lemma 10.3. 

(3). a1 ∉ P. We claim Γ | X(a1). Suppose Γ | X(a1). For the conjunction, call it 
W, of some finite subset of Γ, | W → X(a1). F W X(a1). But a1 does not 70 occur in W. 
By rule 14 | W → (∀x)X(x), so Γ | (∀x)X(x),  (∀x)X(x) ∈ Γ. Since Γ | X(a1), use 
lemma 10.3. 

 
Now we proceed to show completeness. We arrange the parameters as follows: 

 
S1: a1

1, a2
1, a3

1, … 
S2: a1

2, a2
2, a3

2, … 
S3: a1

3, a2
3, a3

3, … 
… … … … … … 

 
and let Pn = S1 ∪ S2 ∪ … ∪ Sn. Let G be the collection of all nice sets with respect to 
any Pi. If Γ ∈G, Γ is nice with respect to, say, Pn. Let P(Γ) = Pn. Let ΓRΔ if P(Γ) ⊆ 
P(Δ) and Γ ⊆ Δ. For any X, let Γ |= X iff X ∈ Γ. By lemmas 10.4 and 10.5 <G, R, |=, 
P> is a model. 



Finally, suppose | X. All the parameters are in, say, Pn. Since ∅ | X, by lemma 
10.3 we can extend ∅ to a set Γ, nice with respect to Pn such that X ∉ Γ. Thus Γ ∈ G, X 
∈ P (Γ) and Γ =| X. 

 
Remark 10.6: This is a "universal" model in the sense of § 6. 
 
In ch. 6 § 4 we will show that the set of all theorems using only parameters of Pn is 

itself a nice set with respect to Pn. This would make the final use of lemma 10.3 above 
unnecessary. 71  

 



 
CHAPTER 6 
 

 
ADDITIONAL FIRST ORDER RESULTS 

 
 

§ 1. Compactness 
 
We call an infinite set S of signed formulas realizable if there is a model <G, R, |=, P> 

and a Γ ∈ G such that for any formula X 
 

TX ∈ S ⇒ X  ∈ P  (Γ) and Γ |= X, 
FX ∈ S ⇒ X  ∈ P (Γ) and Γ =| X. 

 
There is a similar concept for sets of unsigned formulas U. We say U is satisfiable if 

there is a model <G, R, |=, P> and a Γ ∈ G such that for any formula X 
 

X ∈ U ⇒ X  ∈ P (Γ) and Γ |= X. 
 
Lemma 1.1: Let U be a set of unsigned formulas and define a set S of signed formulas to 

be {TX | X ∈ U}. Then 
(1). U is satisfiable if and only if S is realizable, 
(2). U is consistent if and only if S is consistent. 
Proof: Part (1) is obvious. To show part (2), suppose U is not consistent. Then some 

finite subset {u1, ..., un} is not consistent, so from it we can deduce any formula. Let A be 
an atomic formula having no predicate symbols or parameters in common with {u1, ..., un}. 
Then 

 
| I (u1 ∧... ∧ un) → A. 72 

Hence there is a closed tableau for 
 

{F(u1 ∧ ... ∧ un) → A}, 
 
so there is a closed tableau for 
 

{T(u1 ∧ ... ∧ un), FA}. 
 
By the way we have chosen A, there must be a closed tableau for {T(u1 ∧ ... ∧ un)} and 

hence for {Tu1, ..., Tun}. Thus S is not consistent. 
The converse is trivial. 
 
Because we have this lemma, we will only discuss realizability and consistency of sets 

of signed formulas. 
 
Lemma 1.2: Let S be a set of signed formulas. If S is realizable, S is consistent. 



Proof: If S is not consistent, some finite subset Q is not consistent. That is, there is a 
closed tableau C1, C2, …, Cn in which C1 is {Q}. If Q were realizable, by theorem 5.2.7 
every Ci would be, but a closed configuration is not realizable. 

 
Lemma 1.3: Let S be a finite set of signed formulas. If S is consistent, S is realizable. 
 
Proof: Let S be{TX1, ..., TXn, FY1,..., FYm}. 
 
S is consistent if and only if 
 

{F(X1 ∧ … ∧ Xn) → (Y1 ∨ … ∨ Ym)} 
 

is consistent. If this is consistent, (X1 ∧ … ∧ Xn) → (Y1 ∨ … ∨ Ym) is a non-theorem, so by 
the completeness theorem, there is a model <G, R, |=, P> and a Γ ∈ G such that Xi ∈ P  
(Γ), Yj ∈ P  (Γ) and 

 
Γ =| (X1 ∧ … ∧ Xn) → (Y1 ∨ … ∨ Ym). 

 
But then for some Γ 

 
Γ* |= (X1 ∧ … ∧ Xn), Γ* =| (Y1 ∨ … ∨ Ym), 

 
so Γ* realizes S. 

 
This method does not work if S is infinite, but the lemma remains true, at least for sets 

with no parameters. The result can be extended to sets with some parameters, but we will 
not do so. 73  

 
Lemma 1.4: Let S be an infinite set of signed formulas with no parameters. If S is 

consistent, S is realizable. 
Proof: The proof can be based on either of the two tableau completeness proofs. 
If we use the first proof, that of ch. 5 § 5, change step 0 to: “S is consistent. Extend it to 

a Hintikka element with respect to P1. Call the result Γ1”. Continue the proof as written. 
The lemma is then obvious. 

If we use the proof of ch. 5 § 6 the result is even easier. S is consistent, so by lemma 
5.6.4, we can extend S to a set Γ which is good with respect to Pi. The result follows 
immediately. 

 
Theorem 1.5: If S is any set of signed formulas with no parameters, S is consistent if 

and only if S is realizable. 
 
Corollary 1.6: If every finite subset of S is realizable, so is S. 
 
Corollary 1.7: If U is any set of unsigned formulas with no parameters, U is consistent if 

and only if U is satisfiable. 
 



Remark 1.8: The last corollary could have been established directly by adapting the 
completeness proof of ch. 5 § 10. 

 
Definition 1.9: For a set of formulas U, by  Γ |= U we mean Γ |= X for all X ∈ U. 
 
Corollary 1.10 (strong completeness): Let U be any set of unsigned formulas with no 

parameters. Then U | I X if and only if in any model <G, R, |=,P>, for any Γ ∈ G, if Γ |= 
U, Γ |= X. 

Proof: U | I X if and only if {TY | Y ∈ U} ∪ {FX} is inconsistent. 
 
Corollary 1.11: (cut elimination, Gentzen's Hauptsatz): If S is a set of signed formulas 

with no constants and {S, TX} and {S, FX} are inconsistent, so is {S}. 
 
Remark 1.12: This may be extended to sets S with some parameters. To be precise, to 

any set S which leaves unused a countable collection of parameters. It follows that in the 
completeness proof of ch. 5 § 6 a set 4 maximal consistent with respect to P actually 
contains TX or FX for each X with parameters from P. 74 

§ 2. Concerning the excluded middle law 
 
If S is a set of unsigned formulas, by S | C X and S | I X we mean classical and 

intuitionistic derivability respectively. 
Let X(α1, ..., αn) be a formula having exactly the parameters α1, ..., αn. By the closure of 

X we mean the formula 
 

(∀xi(1)) ... (∀xi(n)) X (xi(1), ..., xi(n)) 
 

(where xi(j) does not occur in X(α1, ..., αn). 
 Let M be the collection of the closures of all formulas of the form X ∨ ∼ X. We wish to 

show: 
 
Theorem 2.1: If X has no parameters, 
 

| C X ⇔ M | I X. 
 
We first show: 
 
Lemma 2.2: Let <G,R, |=, P> be a model, Γ ∈ G, and suppose Y M ⇒ Γ |= Y. Then Γ 

can be included in a complete R-chain C such that C’ is a truth set (see ch. 4 § 6). 
Proof: Enumerate all formulas beginning with a universal quantifier: X1, X2, X3, ... 
Let Γ0 = Γ. Having defined Γn, consider Xn+1. If Xn+1 ∉ P (Γn*) for any Γn*, let Γn+ 1 = 

Γn. Otherwise there is some Γn* such that Xn+1 ∈ P (Γn*). Say Xn+1 is (∀x)X(x). We have 
two cases: 

(1). If Γn* |= (∀x)X(x), let Γn+1 = Γn*. 
(2). If Γn* =| (∀x)X(x), there is a Γn** and an α ∈ P (Γn**) such that Γn** =| X(α). Let 

Γn+1 be this Γn**. 



Let the R-chain C be {Γ0, Γ1, Γ2, ... }. Since Y ∈ M ⇒ Γ |= Y and Γ = Γ0, C is a 
complete R-chain by the definition of M, and so C’ is an almost truth set. Thus we have 
only one more fact to show: 

 
Y(α) ∈ C’ for every parameter of C’ ⇒ (∀x)Y(x) ∈ C’. 

 
Suppose (∀x)Y(x, α1, …, αn) ∉ C’ (where α1,..., αn are all the parameters of Y). If some 

αi is not a parameter of C’, we are done. So suppose each αi occurs in C’. Then for some Γn 
∈ C, all αi ∈ P(Γn) and Γn =| (∀x)Y(x, α1, …, αn). But by the construction of C, there is a 
Γm (m ≥ n) such that Γm =| Y(b, α1, ..., αn) for some b ∈ P(Γm). But 

 
Γ |= (∀x1) ... (∀xn) (∀x) [Y(x, x1, ..., xn) ∨ ∼ Y(x, x1, ..., xn)] 75

 

and ΓRΓm, so 
 

Γm |= Y(b, α1, …, αn) ∨ ∼Y(b, α1, …, αn) 
 

thus Γm |=∼Y(b, α1, …, αn). ∼Y(b, α1, …, αn) ∈ C’, so Y(b, α1, …, αn) ∉ C’ for a parameter 
b of C’. 

Now to prove the theorem itself: 
If M | I X then for some finite subset { m1, ..., mn} of M 
 

| I (m1 ∧ ... ∧ mn) → X. 
 

By theorem 4.8.2 (and the completeness theorems) 
 

| C (m1 ∧ ... ∧ mn) → X. 
 

But | C (m1 ∧ ... ∧ mn), hence | C X. 
Conversely, if M | I X, let S be the set of signed formulas 
 

{FX} ∪ {TYY ∈ M}. 
 

Since M | I X, S is consistent. Then by the results of the last section, S is realizable. Thus 
there is a model <G, R, |= , P> and a Γ ∈ G such that Y ∈ M ⇒ Γ |= Y, X ∈ P  (Γ) and Γ 
| X. But X has no parameters, so X ∨ ∼X ∈ M. Thus Γ |= X ∨ ∼X, so Γ |= ∼X. Now by 
lemma 2.2 there is a truth set containing ∼X. Hence | C X. 

 
§ 3. Skolem-Löwenheim 
 
By the domain of a model <G, R, |= , P> we mean ∪Γ∈G

P (Γ). So far we have only 
considered models in which the domain was at most countable. Suppose now we have an 
uncountable number of parameters and we change the definitions of formula, model and 
validity accordingly, but not the definition of proof. 

 
Theorem 3.1: X is valid in all models if and only if X is valid in all models with 

countable domains. 



Proof. One half is trivial. 
Suppose there is a model <G, R, |= , P> with an uncountable domain in which X is not 

valid. The correctness proof of ch. 5 § 2 or 9 is still applicable. Thus X is not provable. 
Since X is not provable, if we reduce the collection of parameters to a countable number 
(including those of X), X still will not be provable. Then any of the completeness proofs 
will furnish a counter-model for X with a countable domain. 76  

This method may be combined with that of § 1 to show 
 
Theorem 3.2: If S is any countable set of signed formulas with no parameters, S is 

consistent if and only if S is realizable in a model with a countable domain. 
 
Theorem 3.3: If U is any countable set of unsigned formulas with no parameters, U is 

consistent if and only if U is satisfiable in a model with a countable domain. 
 
Remark 3.4: In part II, we will be using models with domains of arbitrarily high 

cardinality. 
 
§ 4. Kleene tableaus 
 
The system of this section is based on the intuitionistic system G3 of [10]. The 

modifications are due to Smullyan. The resulting system is like that of Beth except that sets 
of signed formulas never contain more than one F-signed formula. Explicitely, everything 
is as it was in ch. 2 § i and ch. 5 § 1 except that the reduction rules are replaced by the 
following, where S is a set of signed formulas with at most one F-signed formula. 

  
 S, T(X ∧ Y)  ST, F(X ∧ Y) 
KT∧: –––––––––– KF∧: ––––––––––– 

 S, TX, TY  ST, FX 
    
   ST, F(X ∧ Y) 
   ––––––––––– 
   ST, FY 
    
 S, T(X ∨ Y)  ST, F(X ∨ Y) 
KT∨:  ––––––––––– KF∨: ––––––––––– 

 S, TXS, TY  ST, FX, FY 
    
 S, T(∼X)  ST, F(∼X) 
KT∼: –––––––––––– KF∼: ––––––––––– 

 ST, FX  ST, TX 
    

 S, T(X → Y)  ST, F(X→Y) 
KT→:  ––––––––––––– KF→: ––––––––––– 
 ST, FX  S, TY  ST, TX, FY 
    
 S, T(∃x)X(x)  ST, F∃(x)X(x) 
KT∃: –––––––––– KF∃: ––––––––––– 

 S, TX(a)   ST, FX(a) 



    
 S, T(∀x)X(a)  ST, F(∀x)X(a) 
KT∀:  ––––––––––– KF∀: ––––––––––– 

 S, TX(a)  ST, FX(a) 
 
where in KT∃ and KF∀ the parameter a does not occur in S or X(x). 77  

There are several ways of showing this is actually a proof system for intuitionistic logic. 
We choose to show it is directly equivalent to the Beth tableau system, that is, we give a 
proof translation procedure. 

We leave it to the reader to show the almost obvious fact that anything provable by 
Kleene tableaus is provable by Beth tableaus. To show the converse, we need 

 
Lemma 4.1: If a Beth tableau for {TX1, ..., TXn, FY1, ..., FYm} closes, then there is a 

closed Kleene tableau for 
 

{TX1, ..., TXn, F(Y1 ∨ ... ∨ Ym)}. 
 
Proof: The proof is by induction on the length of the closed Beth tableau. If the tableau 

is of length 1, the result is obvious. Now suppose we know the result for all closed Beth 
tableaus of length less than n, and a closed tableau for the set in question is of length n. We 
have several cases depending on the first step of the tableau. 

If the first step is an application of rule F∧, the Beth tableau begins 
 
{{ST, FX1, ..., FXn, FY ∧ Z}}, 
{{ST, FX1, ..., FXn, FY}},{{ST, FX1, ..., FXn, FZ}},  
 

and proceeds to closure. Now by the induction hypothesis there are closed Kleene tableaus 
for{{ST,  F(X1 ∨ … ∨ Xn ∨ Y )}}, and {{ST,  F(X1 ∨ … ∨ Xn ∨ Y )}}. We have two 
possibilities: 

(1). If Y is not “used” in the first tableau, or if Z is not “used” in the second tableau, a 
Kleene tableau beginning 

 
{{ST,  F(X1 ∨ … ∨ Xn ∨ (Y ∧ Z))}}, 
{{ST,  F(X1 ∨ … ∨ Xn)}}, 
 

must close. 
 
(2). If both Y and Z are “used”, a Kleene tableau beginning 
 
{{ST,  F(X1 ∨ … ∨ Xn ∨ (Y ∧ Z))}}, 
: 
: 
{{ST,  F(Y ∧ Z)}}, 
{{ST,  FY}}, {{ST,  FZ}}, 
 

must close. 
The other cases are similar and are left to the reader. 78 



Thus the two tableau systems are equivalent. Now we verify a remark made at the end of 
eh. 5 § 10. 

 
Lemma 4.2: (Gödel, McKinsey and Tarski): | I X ∨ Y iff | I X or | I Y. 
Proof: Immediate from the Kleene tableau formulation. 
 
Lemma 4.3: (Rasiowa and Sikorski): If | I (∃x)X(x, a1, ..., an) where al, …, an are all 

the parameters of X, then | I X(b, al, ..., an) where b is one of the ai. If X has no 
parameters, b is arbitrary and | I (∀x)X(x). 

Proof: A Kleene tableau proof of (∃x)X(x, a1, ..., an) begins 
 

{{F(∃x)X(x, a1, ..., an)}}, 
{{(FX(b, a1, ..., an)}} 

 
and proceeds to closure. If b is some ai, we are done. If not, we actually have a proof, 
except for a different first line, of 

 
(∀x)X(x, a1, ..., an). 

 
§ 5. Craig interpolation lemma 
 
Theorem 5.1: If | I X → Y and X and Y have a predicate symbol in common, then there 

is a formula Z involving only predicates and parameters common to X and Y such that | I 
X → Z and | I Z →Y; if X and Y have no common predicates, either | I ∼X or | I Y. 

 
The classical version of this theorem was first proved by Craig, hence the name. The 

intuitionistic version is due to Schütte [17]. Essentially the same proof was given for a 
natural deduction system by Prawitz [15]. We give basically the same proof in the Kleene 
tableau system. For another proof in this system see [11]. 

We find it convenient to temporarily introduce two symbols t and f into our collection of 
logical symbols, letting them be atomic formulas, and letting them combine according to 
the following rules. 

 
X ∨ t = t ∨ X = t, 
X ∨ f  = f  ∨ X = X, 
X ∧ t = t ∧ X = X, 
X ∧ f =  f  ∧ X = f, 
∼t = f, ∼f = t, 79 
X → t = f → X = t, 
t → X = X  X → f = ∼X, 
(∃x)t = (∀x)t = t, 
(∃x)f = (∀x)f = f. 
 
By a block we mean a finite set of signed formulas containing at most one F-signed 

formula. When we call a block inconsistent, we mean there is a closed Kleene tableau for it. 
By an initial part of a block we mean any subset of the T-signed formulas. We make the 
convention that if S is the finite set of unsigned formulas {X1, ..., Xn} then TS is the set 



{TX1, ..., TXn}. We further make the convention that for a set S of formulas, S1 and S2 

represent subsets such that S1 ∩ S2 = ∅ and S1 ∪ S2 = S. By [S] we mean the set of 
predicates and parameters of formulas of S, together with t and f. 

Now we define an interpolation formula X for the block {TS, FY} (where S is a set of 
unsigned formulas and Y is a formula) with respect to the initial part TS1, which we denote 
by {TS, FY}/{TS1}, as follows (X may be t or f, but we assume t and f are not part of S or 
Y): X is an {TS, FY}/{TS1} if 

(1). [X] ⊆ [S1] ∩ [S2, Y], 
(2). {TS1, FX} is inconsistent, 
(3). {TX, TS2, FY} is inconsistent 
 

(we have temporarily added to the closure rules: closure of a set of signed formulas if it 
contains Tf or Ft). 

 
Lemma 5.2: An inconsistent block has an interpolation formula with respect to every 

initial part. 
Proof: We show this by induction on the length of the closed tableau for the block. If 

this is of length 1, the block must be of the form 
 

{TS, TX, FX}. 
 

We have two cases: 
Case (1). The initial part is {TS1, TX}. Then X is an interpolation formula. 
Case (2). The initial part is {TS1}. Then {TS2, TX, FX} is inconsistent and t is an 

interpolation formula. 
Now suppose we have an inconsistent block, and the result is known for all inconsistent 

blocks with shorter closed tableaus. We have several cases depending on the first reduction 
rule used. 80 

KT ∨: The block is {TS, TX ∨ Y, FZ}, and {TS, TX, FZ} and {TS, TY, FZ} are both 
inconsistent. 

Case (1). The initial part is {TS1, TX ∨ Y}. Then by the induction hypothesis there are 
formulas U1 and U2 such that 
 

U1 is an{TS, TX, FZ}/{TS1, TX}, 
U2 is an {TS, TX, FZ}/{TS1, TY}. 

 
Then U1 ∨ U2 is an {TS, TX ∨ Y, FZ)/{TS1, TX ∨ Y}. 

Case (2). The initial part is {TS1}. Again, by hypothesis, there are U1, U2 such that 
 

U1 is an {TS, TX, FZ}/{TS1}, 
U2 is an {TS, TY, FZ}/{TS1}. 

 
Then U1 ∨ U2 is an {TS, TX ∨ Y, FZ}/{TS1}. 

KF∨: The block is {TS, FX ∨ Y}, and {TS, FX} or {TS, FY} is inconsistent. Suppose the 
first. Let the initial part be {TS1}. By hypothesis there is a U such that 
 

U is an {TS, FX}/{TS1}. 
 



Then U is an {TS, FX ∨ Y}/{TS1}. 
KT∧: The block is {TS, TX ∧ Y, FZ}, and {TS, TX, TY, FZ} is inconsistent. 
Case (1). The initial part is {TS1, TX ∧ Y}. By hypothesis there is a U such that 
 

U is an {TS, TX, TY, FZ}/{TS1, TX, TY}. 
 

Then U is an {TS, TX ∧ Y, FZ}/{TS1, TX ∧ Y}. 
Case (2). The initial part is {TS1}. By hypothesis there is a U such that 

 
U is an {TS, TX, TY, FZ}/{TS1}. 

 
Then U is an {TS, TX ∧ Y, FZ}/{TS1}. 

KF∧: The block is {TS, FX ∧ Y}, and {TS, FX} and {TS, FY} are both inconsistent. 
Suppose the initial part is {TS1}. By hypothesis there are U1, U2 such that 

 
U1 is an {TS, FX}/{TS1}, 
U2 is an {TS, FY}/{TS1}. 

 
Then U1 ∧ U2 is an {TS, FX ∧ Y}/{TS1}. 81 

KF∼: The block is {TS, F∼X}, and {TS, TX} is inconsistent. Suppose the initial part is 
{TS1}. By hypothesis there is a U such that 
 

U is an {TS, TX}/{TS1}. 
 
Then U is an {TS, F∼X)/{TS1}. 

KT∼: The block is {TS, T∼X, FY}, and {TS, FX} is inconsistent. 
Case (1). The initial part is {TS,}. By hypothesis there is a U such that 

 
U is an (TS, FX}/{TS1) 

 
Then U is an {TS, T''X, FY)/{TS1}. 

Case (2). The initial part is {TS1, T∼X}. By hypothesis there is a U such that 
 

U is an {TS, FX}/{TS2}. 
 

We claim that 
 

∼U is an {TS, T∼ X, FY}/{TS1}. 
 
First we verify its predicates and parameters are correct. By hypothesis [U] ⊆ [S2] ∩ [S1, 
X], so immediately [∼U] ⊆ [S1, ∼X] ∩ [S2, Y]. We have the following two blocks are 
inconsistent: 
 

{TS2, FU}, 
{TS1,TU, FX}. 

 
It follows that the following two blocks are also inconsistent: 



 
{TS1,T∼X, F∼U}, 
{TS2, T∼U, FY}, 

 
and we are done. 

KF→: The block is {TS, FX → Y}, and {TS, TX, FY} is inconsistent. Suppose the initial 
part is {TS1}. By hypothesis there is a U such that 
 

U is an {TS, TX, FY}/{TS1}. 
 
Then U is an {TS, FX → Y}/{TS1}. 

KT→: The block is {TS, TX → Y, FZ}, and {TS, FX} and {TS, TY, FZ} are both 
inconsistent. 

Case (1). The initial part is {TS1}. By hypothesis there are U1, U2 such that 
 

U1 is an {TS, FX}/{TS1}, 
U2 is an {TS, TY, FZ)/{TS1}, 82 

 
Then U1 ∧ U2 is an {TS, TX → Y, FZ}/{TS1}. 

Case (2). The initial part is {TS1, TX → Y}. By hypothesis there are U1, U2 such that 
 

U1 is an {TS, FX}/{TS2}, 
U2 is an {TS, TY, FZ}/{TS1, TY}. 

 
We claim U1 → U2 is an {TS, TX → Y, FZ}/{TS1, TX → Y}. 

By hypothesis 
 

[U1] ⊆ [S2] ∩ [S1, X], 
[U2] ⊆ [S1, Y] ∩ [S2, Z], 

so 
[U1 → U2] ⊆ [S1, X → Y] ∩ [S2, Z]. 

 
We have that the following four blocks are inconsistent: 
 
(1). {TS2, FU1}, 
(2). {TU1, TS1, FX}, 
(3). {TS1, TY, FU2}, 
(4). {TU2, TS2, FZ}, 
 
and we must show the following two blocks are inconsistent: 
 

{TSl, TX → Y, FU1 → U2}, 
{TU1 → U2, TS2, FZ}. 

 
The first follows from (2) and (3), and the second from (1) and (4). 

KF∃: The block is {TS, F(∃x)X(x)}, and {TS, FX(a)} is inconsistent. 
Suppose the initial part is {TS1}. By hypothesis there is a U such that 



 
U is an {TS, FX(a)}/{TS1}. 

 
Then [U] ⊆ [S1] ∩ [S2, X(a)]. 

Case (1). a ∉ [U]. 
Then U is an {TS, F(∃x)X(x)}/{TS1} 

Case (2). a ∈ [U], a ∈ [S2] 
Again U is an {TS, F(∃x)X(x)}/(TS1} 

Case (3). a ∈ [U], a ∉ [S2]. 
Then (∃x)U(a

x) is an 
 
{TS, F(∃x)X(x)}/{TS1}. 

 
KT∃: The block is {TS, T(∃x)X(x), FZ}, and {TS, TX(a), FZ} is 
inconsistent, where a ∉ [S, X(x), Z]. 83



 
 Case (1). The initial part is {TS1, T(∃x)X(x)}. By hypothesis there is a U such that 
 

U is an {TS, TX(a), FZ}/{TS1, TX(a)}. 
 

Then U is an {TS, T(∃x)X(x), FZ}/{TS1, T(∃x)X(x)}. 
Case (2). The initial part is {TS1}. By hypothesis there is a U such that 
 

U is an {TS, TX(a), FZ}/{TS1}. 
 

Then U is an {TS, T(∃x)X(x), FZ}/{TS1}. 
KF∀: The block is {TS, F(∀x)X(x)}, and {TS, FX(a)} is inconsistent, where a ∉ [S, 

X(x)]. Suppose the initial part is {TS1}. By hypothesis there is a U such that 
 

U is an {TS, FX(a)}/{TS1}. 
 

Then U is an {S, F(∀x)X(x)}/{TS1}. 
KT∀: The block is {TS, T(∀x)X(x), FZ}, and {TS, TX(a), FZ} is inconsistent. 
Case (1). The initial part is {TS1, T(∀x)X(x)}. By hypothesis there is a U such that 
 

U is an {TS, TX(a), FZ}/{TS1, TX(a)}. 
 
Case (la). a ∉ [U]. 

Then U is an 
 

{TS, T(∀x)X(x), FZ}/{TS1, T(∀x)X(x)}. 
 
Case (1b). a ∈ [U], a ∈ [S1, X(x)]. 

Again 
 

U is an {TS, T(∀x)X(x), FZ}/{TS1, T(∀x)X(x)}. 
 
Case (lc). a ∈ [U], a ∉ [S1, X(x)]. 

Then (∀x)U(a
x) is an {TS, T(∀x)X(x), FZ}/{TS1, T(∀x)X(x)}. 

Case (2). The initial part is {TS1}. By hypothesis there is a U such that 
 

U is an {TS, TX(a), FZ}/{TS1}. 
 
Case (2a). a ∈ [U]. 

Then U is an {TS, T(∀x)X(x), FZ}/{TS1}. 
Case (2b). a ∈ [U], a ∉ [S2, X(x), Z]. 

Again U is an {TS, T(∀x)X(x), FZ}/{TS1}. 
Case (2c). a ∈ [U], a ∉ [S2, X(x), Z]. 84 
 
Then (∃x)U(a

x) is an {TS, T(∀x)X(x), FZ}/{TS1}. 
 
Now to prove the original theorem 5.1: 
Suppose | I X → Y. Then {TX, FY} is inconsistent. By the lemma, there is a U such 

that U is an {TX, FY}/{TX}. We have three cases: 
(1). U = t. 

Then since {Tt, FY} is inconsistent, | I Y. 



(2). U = f. 
Then since {TX, Ff} is inconsistent, {F∼X} is also inconsistent (f is 
not in X). Thus  | I ∼X. 

(3). U ≠ t, U ≠ f. 
Then U is a formula not involving t or f, all the parameters and predicates of U are in X 
and Y, and since {TX, FU} and {TU, FY} are both inconsistent, | I X → U and  | I U 
→ Y. 

 
§ 6. Models with constant function 
 
In part II we will be concerned with finding countermodels for formulas with no 

universal quantifiers, and we will confine ourselves to models with a constant function. 
To justify this restriction, we show in this section 

 
Theorem 6.1: If X is a formula with no universal quantifiers and  | I X, then there 

is a counter-model <G, R, |=, P> for X in which P is a constant function. 
 
Definition 6.2: For this section only, let a1, a2, a3,... be an enumeration of all 

parameters. We call a set Γ of signed formulas a Hintikka element if Γ is a Hintikka 
element with respect to some initial segment of a1, a2, a3,... (see ch. 5 § 4). 

 
Lemma 6.3: If S is a finite, consistent set of signed formulas with no universal 

quantifiers, S can be extended to a finite Hintikka element. 
Proof: Suppose S is the set {X1, X2,..., Xn} where each Xi is a signed formula. We 

define the two sequences {Pk}, {Qk} as follows: 
Let 

P0 = ∅, Q0 = X1, ..., Xn. 
Suppose we have defined Pk and Qk where 

 
Pk = Y1, …, Yr, Qk = W1, …,  Ws, 85  

 
and Pk ∪ Qk (considered as a set) is consistent. To define Pk+1 and Qk+1 we have several 
cases depending on W1: 

Case atomic: If W1 is a signed atomic formula, let 
 

Pk+1 =Y1, …, Yr, W1, Qk +1 = W2, …, Ws. 
 
Case T∨: If W1 is TX ∨ Y, either TX or TY is consistent with Pk ∪ Qk, say TX. Let 
 

Pk+l =Y1,...,Yr, TX ∨ Y, Qk+l = W2, ...,Ws, TX. 
 
Case F∨: If W1 is FX ∨ Y then FX, FY is consistent with Pk ∪ Qk. Let 
 

Pk+1 = Y1, ..., Yr, FX ∨ Y, Qk+1 = W2, ..., Ws, FX, FY. 
 
Cases T∧, F∧, T∼, T→ are similar. 
Case T∃: If W1 is T(∃x)X(x), let a be the first in the sequence a1, a2, … not occurring 

in Pk or Qk. Then TX(a) is consistent with Pk ∪ Qk. Let 
 

Pk+1 = Y1, ..., Yr, T(∃x)X(x), Qk+1 = W2,..., Ws, TX(a). 
 



Case F∃: If W1 is F(∃x)X(x), let {ai(1),..., ai(t)} be the set of parameters occurring in Pk 
∪ Qk such that no FX(ai(j)) occurs in Pk ∪ Qk. Then {FX(ai(1), ..., FX(ai(t)} is consistent 
with Pk ∪ Qk. Let 

 
Pk+1 = Pk, Qk+1 = W2,..., Ws, FX(ai(1)),..., FX(ai(t), F(∃x)X(x). 

 
After finitely many steps there will be no T-signed formulas left in the Q-sequence 

because each rule T∨, T∧, T∼, T→, T∃ reduces degree, and no rule F∧, F∨, F∃ 
introduces new T-signed formulas. 

When no T-signed formulas are left in the Q-sequence, no new parameters can be 
introduced since rule T∃ no longer applies. After finitely many more steps we must 
reach an unusable Q-sequence. The corresponding P ∪ Q-sequence is finite, consistent, 
and clearly a Hintikka element. 

 
Remark 6.4: The above proof also shows the following which we will need later: 
Let R be a finite Hintikka element. Suppose we add (consistently) a finite set of 

F-signed formulas to R and extend the result to a finite Hintikka element S by the above 
method. Then 

 
RT = ST. 86 

Since R ⊆ S, certainly RT ⊆ ST. That ST ⊆ RT. also holds follows by an inspection of the 
above proof; no new T-signed formulas will be added. 

 
Now we turn to the proof of the theorem itself. We have no universal quantifiers to 
consider, so we may use the definition of associated sets in ch. 2 § 4. 

 Suppose X is a formula with no universal quantifiers, and =| I X. Then {FX} is 
consistent. Extend it to a finite Hintikka element S0

0. Let T1, …, Tn be the associated 
sets of S. Extend each to a finite Hintikka element, S0

1,..., S0
n respectively. Thus we 

have 
 

S0
0, S0

1,..., S0
n. 

 
For each parameter a of some S0

i and each formula of the form F(∃x)X(x) in S0
0, adjoin 

FX(a) to S0
0 and extend the result to a Hintikka element S1

0. Do the same for S0
1,..., S0

n, 
producing S1

1,..., S1
n respectively. 

Thus we have now 
 

S1
0, S1

1,..., S1
n. 

 
Let Tn+1, …, Tm be the associated sets of S1

0, S1
1,..., S1

n. Extend each to a Hintikka 
element, S0

n+1, ..., S0
m respectively. Thus we have now 

 
 S1

0, S1
1,..., S1

n, S0
n+1, ..., S0

m. 
 

For each parameter a used so far, and for each formula of the form F(∃x)X(x) in S1
0 

adjoin FX(a) to S1
0 and extend the result to a finite Hintikka element S2

0. Do the same 
for each. Thus we have now 

  
S2

0, S2
1,..., S2

n, S1
n+1, ..., S1

m. 
 

Again take the associated sets, and extend to finite Hintikka elements, producing now 



 
S2

0, S2
1,..., S2

n, S1
n+1, ..., S1

m, S0
m+1, …, S0

p. 
 

Continue in this manner. Let 
∞ 

S0 = ∪ Sk
0 

k=0 
∞ 

S1 = ∪ Sk
1 

k=0 

 
By the remark above, for each n, 

 
SnT = S0

nT = S1
nT = … 

 
Thus if Sk

n has as an associated set S, Sj
m, SnT ⊆ Sm. 87  

It now follows that {S0, S1, ... } is a Hintikka collection. For example, suppose F∼Y 
∈ Sj. Let k be the least integer such that F∼Y ∈ Sk

j.. By the above construction, there is 
some set S0

r such that S0
r is an associated set of Sk

j and TY ∈ S0
r. But then Sk

jT  ⊆ S0
r, so 

by the above SjT  ⊆ Sr, and TY ∈ Sr. The other properties are shown similarly. 
Moreover, P (Sn) = P (Sm) for all m and n, as is easily seen. (Recall that P(S) is the 

collection of all parameters, used in S.) Now as in ch. 5 § 3 there is a model for this 
Hintikka collection, and this model will have a constant map, so the theorem is shown. 
88 
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